
1. Introduction
Well pumping is widely used in various geological engineering applications, such as groundwater extraction, 
subsurface remediation, and energy resource exploitation. Research on well hydraulics has a long history, 
with classic approaches and solutions that have provided benchmark results in hydrogeology. Notable exam-
ples include Hantush  (1959), Moench and Prickett  (1972), Neuman (1972), Papadopulos and Cooper  (1967), 
and Theis (1935). These approaches and solutions are based on the assumption of linear or Darcy flow, where 
the hydraulic gradient and water flux exhibit a linear relationship with hydraulic conductivity. However, it is 
known that the Darcy flow assumption may not be valid at high Reynolds numbers (Re ≥ 10) in porous media 
(Bear,  1988). Forchheimer  (1901) introduced the Forchheimer equation that incorporates a quadratic term in 
addition to the traditional flow equation to account for nonlinearity. Subsequent studies further investigated and 
validated the importance of considering non-Darcy flow in porous media (Z. X. Chen et al., 2001; Irmay, 1958; 
Thiruvengadam & Kumar, 1997; Whitaker, 1996).

Nonlinear flows with high velocities are commonly observed in well pumping systems, where the flow regime near 
the wellbore exhibits significant nonlinearity due to the increasing specific flow rate as it approaches the wellbore 
(Huang & Ayoub, 2008; Wu, 2002). While predicting steady-state drawdown behavior for such nonlinear flow 
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Plain Language Summary This study focuses on understanding the behavior of water flow in 
pumping wells considering two important factors: wellbore storage and non-Darcy flow. Wellbore storage 
refers to the amount of water stored inside the well, while non-Darcy flow describes the flow behavior in the 
surrounding aquifer. Using a computer model, the researchers found that as pumping continues, the areas of 
nonlinear flow expand and eventually settle into a stable pattern. This transition from nonlinear flow to a more 
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of wellbore storage and the flow patterns near the well have a significant impact on the overall hydraulic 
performance. These findings have practical implications for improving the design and operation of pumping 
wells.
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is relatively simple (Bear, 2012; Ewing et al., 1999), analyzing transient non-Darcy flow to a well presents chal-
lenges due to the complexity of the nonlinear flow equation (Mathias et al., 2008; Takhanov, 2011). To address 
this, several approximate solutions have been developed for non-Darcy flow. Moutsopoulos and Tsihrintzis (2005) 
derived an approximate similarity solution for one-dimensional large flow rates. Wen et al. (2008) employed a 
power law function and a time-dependent approximation term to describe non-Darcy flow, which converges with 
classic analytical solutions at large distances but may not be valid near the wellbore. Mathias et al. (2008) derived 
a solution using an asymptotic expansion technique that performs well at large times and away from the wellbore. 
They also developed a finite-difference solution for the transient state; however, the boundary condition at the 
screen lacked a proper physical interpretation and later proved to require an additional constraint for implemen-
tation in Text S1 in Supporting Information S1. The above solutions have limitations, especially in capturing the 
drawdown behavior at early times and near the wellbore, which remains relatively unexplored.

Wellbore storage is another important factor that adds complexity to well hydraulics in pumping test theory and 
analysis. The significance of well storage effects was recognized in large-diameter wells, where it was observed 
that these effects are prominent during the early stages of pumping (Papadopulos & Cooper, 1967). During the 
initial stage, most of the pumped water is supplied by the downward vertical casing flow, and its contribution 
gradually decreases to zero as pumping continues. The interplay between well geometry and aquifer characteris-
tics governs this process (He et al., 2022; Hou & Luo, 2019; Martin-Hayden et al., 2014), leading to alterations in 
the hydraulic performance of the well. While the impact of wellbore storage on well hydraulics has been recog-
nized, the flow field within the wellbore has often been neglected. Unlike well storage, which accounts for the 
pumped water from well casing and screen storage, the wellbore flow field refers to the velocity field generated 
by the pump intake suction and its influence on the aquifer flow field. It is reasonable to hypothesize that the flow 
field within the wellbore may significantly affect the aquifer flow near the wellbore and the drawdown behavior 
in the pumping well. In fact, VonHofe and Helweg (1998) conducted a field study on the flow velocity outside 
the well screen and concluded that the pump intake position has a non-negligible impact on the hydraulic perfor-
mance of a production well, indicating that the flux is not evenly distributed along the screen. It has been demon-
strated by C. Chen et al. (2003) that the conventional 1-D model assumption of imposing the screened well face 
as a uniform-flux boundary or a uniform-head boundary misrepresents the actual flux or pressure distribution 
along the horizontal wellbore. Wang and Zhan (2017a, 2017b) proposed a more realistic mixed-type boundary 
condition at the screen to study in-well head loss. However, the employed hybrid analytical-numerical method is 
limited to simulating 1-D wellbore flow. Unfortunately, the combined effect of the wellbore flow and wellbore 
storage has not been comprehensively considered in pumping test theory and analysis.

In this study, we aim to investigate the combined impact of non-Darcy flow and wellbore storage on the aquifer 
flow near the wellbore and the drawdown behavior in both the pumping well and the aquifer. Specifically, we 
will examine how the nonlinearity of the flow and the characteristics of wellbore storage influence the hydraulic 
performance of well systems in high Reynolds scenarios. The novelty of our study lies in the integration of the 
flow field within the wellbore described by the Reynolds-averaged Navier-Stokes (RANS) equations with the 
groundwater flow in the aquifer, using a multiphysics numerical model. To the best of our knowledge, this is 
the  first time such a multiphysics model is being utilized to explore the effects of wellbore flow and non-Darcy 
flow. Additionally, we will investigate the potential for simplifying this complex multiphysics model while 
maintaining its accuracy and relevance. By conducting these numerical investigations, we aim to enhance our 
understanding of wellbore storage effects and non-Darcy flow, which will contribute to the advancement of well 
hydraulics and provide valuable insights for practical applications in various geological engineering activities.

2. Conceptual Model
Figure 1 depicts the conceptual model used in this study. We consider a common pumping scenario involving 
a fully-penetrating short screened well with a screen radius of rw. The well operates at a constant pumping rate 
in a homogenous and isotropic confined aquifer that extends infinitely in the horizontal plane (Papadopulos & 
Cooper, 1967). The conceptual model can be extended to work with heterogenous and anisotropic formation by 
assigning a conductivity matrix in numerical simulations. The upper and lower boundaries of the aquifer domain 
are impermeable, preventing any flow across these boundaries. The pumping tube is positioned at the center 
of the well screen, which induces radial formation flow toward the wellbore. The impact of pump intake verti-
cal position on sample origin and well hydraulic performance is a topic of considerable discussion (McMillan 
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et al., 2014; Nielsen, 2005; VonHofe & Helweg, 1998). Consequently, the movement of the pumping tube along 
the centering line within the well screen leads to changes in the wellbore mixing and flow field, which under-
scores the limitations inherent in the conventional 1-D model. To simplify the analysis, we adopt a 2-D axisym-
metric flow model represented by the coordinates (r, φ, z). It is important to note that this study does not consider 
well loss and skin effect. This means that no pressure loss is accounted for due to formation flow through the 
screen, and there are no variations in permeability of the formation near the wellbore.

During pumping, the pumped water, Q, is comprised of two water sources: water from the wellbore storage, Qw, 
and water from the formation, Qaq. Thus, we investigate a multiphysics problem involving the interaction between 
wellbore flow and porous media flow during pumping. Two distinct domains are considered: Domain 2 represents 
the flow within the wellbore, while Domain 1 represents the flow in the porous media surrounding the wellbore. In 
Domain 2, we assume turbulent flow conditions due to the small length scale and high pumping rates, the values of 
which are similar to those described in the field study by VonHofe and Helweg (1998). To accurately account for 
the hydraulic losses and eddy behavior associated with turbulence dissipation, we employ the k-ϵ turbulence model. 
This model incorporates the concepts of turbulent kinetic energy and dissipation rate into the RANS equations, 
providing a comprehensive description of the turbulent flow dynamics within the wellbore. In Domain 1, we assume 
non-Darcy flow. Non-Darcy flow is a significant phenomenon in scenarios characterized by high Reynolds numbers 
near the wellbore, where the inertial and drag forces result in nonlinear flow behavior. It is worth noting that 
Martin-Hayden et al. (2014) employed a similar conceptual model to investigate groundwater sampling; however, 
their study focused on laminar flow and Darcy flow, neglecting the vertical flow from the well casing. In our study, 
we extend this conceptual model by incorporating turbulent flow conditions and considering the vertical flow from 
the well casing, enabling a more comprehensive understanding of the hydraulic behavior within the well system.

3. Numerical Modeling
3.1. Multiphysics Flow Model

Based on the conceptual model, the developed numerical model consists of an aquifer domain and a wellbore 
domain. The continuity equation in the aquifer domain is given by:

−
𝑆𝑆𝑠𝑠

𝜌𝜌𝜌𝜌

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕
= ∇ ⋅ 𝐪𝐪𝟏𝟏 (1)

where t [T] is the pumping time, p1 [M/(LT 2)] and q1 [L/T] are hydraulic pressure and flux vector in the aquifer 
domain, Ss [L −1] is specific storativity, ρ [M/L 3] is water density, and g [L/T 2] is gravity constant.

The nonlinear relationship between the specific discharge and the pressure gradient is described by the 
Forchheimer's equation:

−
𝐾𝐾

𝜌𝜌𝜌𝜌
∇𝑝𝑝1 = 𝒒𝒒𝟏𝟏 + 𝛽𝛽|𝒒𝒒𝟏𝟏|𝒒𝒒𝟏𝟏 (2)

Figure 1. Schematic diagram of the axisymmetric conceptual model. Domain 1 and 2 simulate non-Darcy flow and wellbore 
flow, respectively.
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where K [L/T] is hydraulic conductivity. It is important to note that in low 
Reynolds number situations, the nonlinear terms become negligible and 
Darcy flow assumptions are sufficient.

The Forchheimer parameter β was investigated by various experimental and 
field studies (Muskat, 1937; Scheidegger, 1960). The solution proposed by 
Joseph et al. (1982) and Ward (1964) is used here:

𝛽𝛽 = 𝐶𝐶𝐹𝐹

√

𝐾𝐾𝐾𝐾

𝜇𝜇𝜇𝜇
 (3)

where μ [M/(LT)] is dynamic viscosity of water, and CF is a dimension-
less coefficient. CF ranges from 0 to 1 and is considered an indicator of 
groundwater flow nonlinearity. A typical value of CF is 0.55 (Nield & 
Bejan, 2006).

In the wellbore domain, considering incompressible and Newtonian fluid, 
the flow field is described by the Reynolds-averaged Navier-Stokes equations 
(RANS). The k-ϵ turbulence model is used to simulate mean flow character-
istics for turbulent flow conditions, RANS are modified to:

𝜌𝜌
𝜕𝜕𝒒𝒒𝟐𝟐

𝜕𝜕𝜕𝜕
+ 𝜌𝜌(𝒒𝒒𝟐𝟐 ⋅ ∇)𝒒𝒒𝟐𝟐 = −∇𝑝𝑝2 + ∇ ⋅ (𝜇𝜇 + 𝜇𝜇𝜕𝜕)

(
∇𝒒𝒒𝟐𝟐 + (∇𝒒𝒒𝟐𝟐)

𝑇𝑇
)
+ 𝜌𝜌𝜌𝜌 (4)

where p2 [M/(L 1T 2)] and q2 [L/T] are pressure head and velocity vector in the wellbore domain, μt [M/(LT)] is the 
turbulent (eddy) viscosity at high Reynolds number.

𝜇𝜇𝑇𝑇 = 𝜌𝜌𝜌𝜌𝜇𝜇
𝑘𝑘2

𝜀𝜀
 (5)

where Cμ is a model constant. The model introduces two dependent variables: the turbulent kinetic energy, k 
[L 2/T 2], and the turbulent dissipation rate, ϵ [L 2/T 3]. Transport equations for the two variables can be found in 
Launder and Spalding (1974).

Casing walls and tube walls in the wellbore domain are considered smooth, that is, the friction factor is small. In 
fact, when the base case parameters from Table 1 are applied to the Darcy-Weisbach equation, the resulting head 
loss (<1 cm) is negligible. A lift-off is applied to casing and tube walls (no slip boundary condition) to accom-
modate turbulent flow, that is, a dimensionless distance of 11 between the computational domain and the physical 
wall is created. The law of the wall is verified using the cross-sectional velocity profile at the top of the screen, 
ensuring the validity of the turbulent simulation. Detailed explanation and figures can be found in Supporting 
Information S1 (Text S4 and Figure S6 in Supporting Information S1).

The wellbore domain and aquifer domain are coupled by setting equal flux and hydraulic pressure on both sides 
of the wellbore screen (rw [L]), that is, pressure and flux continuity:

𝑝𝑝2(𝑟𝑟𝑤𝑤, 𝑧𝑧, 𝑧𝑧) = 𝑝𝑝1(𝑟𝑟𝑤𝑤, 𝑧𝑧, 𝑧𝑧), 𝒒𝒒𝟐𝟐(𝑟𝑟𝑤𝑤, 𝑧𝑧, 𝑧𝑧) ⋅ 𝒏𝒏𝒓𝒓 = 𝒒𝒒𝟏𝟏(𝑟𝑟𝑤𝑤, 𝑧𝑧, 𝑧𝑧) ⋅ 𝒏𝒏𝒓𝒓 (6)

where nr is the unit vector in r-axis.

The outlet boundary is applied at the pumping tube intake, where a normal outflow velocity is imposed. The free 
surface movement in the wellbore can be described by the moving mesh:

𝒖𝒖mesh ⋅ 𝒏𝒏 = 𝒒𝒒𝟐𝟐 ⋅ 𝒏𝒏, 𝑝𝑝at = 𝑝𝑝2 (7)

where umesh [L/T] indicates water column mesh velocity, pat [M/(L 1T 2)] is the atmosphere pressure, and n is 
the normal vector of the free surface motion. To control the attachment angle between the free surface and 
adjacent walls, surface tension force is included in momentum equation, with a specified contact angle of π/2 
radians. The mesh resolution in the wall region is verified by maintaining a stable contact angel during the 
simulations.

Notation Parameter Value

Aquifer thickness b 2 m

Aquifer lateral length L 1,000 m

Pumping rate Q 0.14 m 3/s

Well radius (screen/casing) rw = rc 0.3 m

Pumping tube radius rt 0.02 m

Aquifer conductivity K 0.01 m/s

Aquifer specific storativity Ss 1 × 10 −3 1/m

Forchheimer coefficient CF 0.55

Intake height ht 1 m

Initial hydraulic head h0 20 m

Wellbore Reynolds number Re 300,000

Table 1 
Hydrogeologic Parameters for the Base Case Model
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3.2. Numerical Implementation

The numerical model is solved in a 2-D axisymmetric domain using COMSOL Multiphysics ®, a finite element 
analysis and solver software, which has been extensively used as a reliable tool for simulating groundwater flow 
(Li et al., 2009; Singha & Loheide, 2011; Zanchini et al., 2012).

The wellbore fluid domain deformations are implemented to account for the motion of the air/fluid interface and 
the decline of hydraulic head. The moving mesh module is applied, constraining mesh displacement only by the 
domain boundaries. Here, no slip boundary condition is specified for casing walls and tube walls in the wellbore 
domain. The shape of the domain is governed by the explicit boundary conditions (the pumping tube, the free 
surface, and walls). Within the interior of the domain, the mesh is governed by a smoothing method. The Yeoh 
smoothing method (Rivlin & Rideal, 1948; Selvadurai, 2006; Yeoh, 1993) is employed to solve the deforming 
mesh. The method seeks to minimize mesh deformation energy. The strain energy density function is used to 
minimize deformation energy:

𝑊𝑊 =
1

2∫
Ω

3∑

𝑖𝑖=1

𝐶𝐶𝑖𝑖(𝐼𝐼1 − 3)
𝑖𝑖
+ 𝜅𝜅′

(𝐽𝐽 − 1)
2
𝑑𝑑𝑑𝑑 (8)

where I1 is the strain invariant of the Cauchy-Green deformation tensors, J is the determinant of the defama-
tion gradient tensor, and κ′ is the material bulk modulus. Ci are material constants, C1 and C3 are 1 and 0 for 
incompressible materials while stiffening factor C2 of 10 controls the nonlinear stiffening of the material under 
deformation. Yeoh smoothing produces the best results and allows the largest displacement before elements 
become inverted. However, it can cause convergence problems due to its strong nonlinearity, particularly for the 
time-dependent solver. Thus, mesh configurations are optimized to address numerical stability.

Table 1 lists the typical hydrogeologic parameters for the base case model, which are based on typical values 
reported in Gutentag et al. (1984), the turbulent flow regime in the wellbore and the non-Darcy flow regime in 
the aquifer are confirmed by the Reynolds number. These parameters are utilized in all simulations conducted in 
this study unless otherwise stated. Preliminary sensitivity analysis was performed by varying the aquifer lateral 
length, ensuring that the constant head boundary is placed far enough to eliminate any boundary effect.

The model grid size decreases gradually from the aquifer constant head boundary toward the center of the bore-
hole, with a maximum element size restriction of 0.01 m at the well screen. The wellbore domain, with a mesh 
area of 6 m 2, is separated into 5,454 irregular triangular elements, while the aquifer domain has 7,211 elements 
distributed across an area of 2,000 m 2. A mesh refinement study was performed to determine that the average 
element quality is adequate.

3.3. Dimensionless System

Typical dimensionless transformation of drawdown S [L] solutions are (Papadopulos & Cooper,  1967; 
Theis, 1935):

𝑆𝑆𝐷𝐷 =
𝑆𝑆

𝑄𝑄∕(4𝜋𝜋𝜋𝜋 )
 (9)

𝑡𝑡𝐷𝐷 =
𝑡𝑡

𝑟𝑟2𝑤𝑤𝑆𝑆𝑠𝑠𝑏𝑏∕(4𝑇𝑇 )
 (10)

𝑟𝑟𝐷𝐷 =

𝑟𝑟

𝑟𝑟𝑤𝑤
 (11)

It shall be noticed that in cylindrical coordinates, a pumping well yields negative radial flux, as shown in Figure 1. 
To establish a positive dimensionless system, Forchheimer parameter and the flux vector are defined as follows:

𝛽𝛽𝐷𝐷 =
𝛽𝛽

2𝜋𝜋𝜋𝜋𝜋𝜋𝑤𝑤∕𝑄𝑄
 (12)

𝒒𝒒
𝑫𝑫
= (𝑞𝑞𝑟𝑟𝑟𝑟, 0, 𝑞𝑞𝑧𝑧𝑟𝑟) =

−𝒒𝒒

𝑄𝑄∕(4𝜋𝜋𝜋𝜋𝑟𝑟𝑤𝑤)
 (13)
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where q represents both flux vectors q1 and q2 in aquifer and wellbore.

4. Hydraulic Behavior Analysis
4.1. Wellbore Flow Field

Figure 2 provides a visual representation of the simulated flow field in the wellbore and the two components 
of pumped water. The color-coded streamlines depict the flow direction and source, with green representing 
downward flow from the casing (wellbore storage) and blue representing formation inflow (aquifer storage). 
The moving-mesh method describes the decrease of the free surface in the wellbore. Cases with various aquifer 
storativity α (defined as α = Ssb) are illustrated. The 2-D model demonstrates a more comprehensive and realistic 
representation of in-well hydraulics when compared to conventional 1-D analytical models. Integrated effects 
from wellbore storage and turbulent flow are clearly observed.

During the early pumping stage, well storage is a more tangible source compared to aquifer storage. In particular, 
the model with the lowest storativity has little formation water entering the screen. In contrast, for the highest α 
case, most of pumped water is from the formation inflow, indicating that aquifer flow has dominated the pumped 
water at this moment due to faster aquifer storage response. As pumping continues, the rate of wellbore drawdown 
increase slows down, leading to less downward flow from the well casing and more influent from the formation. 
This behavior is characterized by the dimensionless variable water flow ratio ηq, which will be further elaborated 
in Section 4.3. The large Reynolds number resulting from the parameters listed in Table 1 causes turbulence and 
the formation of a vortex (see the vorticity field in Figure S7 in Supporting Information S1) at the center of the 
screen at the intake position. Curved vortex lines, tangent to the local vorticity vector (in the θ direction in the 2-D 
asymmetric model), form a loop around the pumping tube. Through the time differentiation of the fluid circula-
tion, Kevin's theorem is proved. The proof indicates that vortex occurs when the fluid is viscid and the integrated 
viscous force is non-zero around the contour of the local region. In practice, the conditions for vorticity creation 
via viscous torques often occur at solid boundaries where the no-slip condition is applied (Kundu et al., 2015). 
During the early pumping stage, the streamlines forming the vortex are mostly from the downward casing flow, 
especially for the low storativity case. However, as pumping progresses and the aquifer responds, the stream-
lines forming the vortex are dominated by the aquifer flow. The vortex and the pumping stress also accelerate 
the inflow velocity below the intake and decelerate the inflow velocity above the intake, leading a nonuniform 
entrance velocity profile, a detailed discussion is given in Section 4.5.

4.2. Wellbore and Aquifer Drawdown

We compare our numerical model, which incorporates wellbore flow and non-Darcy flow, with two classic Darcy 
flow solutions to examine wellbore and aquifer drawdown behavior. The first solution is Theis solution, which 
assumes an infinitely small well radius and considers all pumped water to be from the formation (Theis, 1935), 
that is, no green streamlines from the casing in Figure 2. Although the Theis solution is widely used, it has limita-
tions at early times and near the wellbore due to these assumptions (Mueller & Witherspoon, 1965). The second 
solution is the Papadopulos solution, which is more complex but realistic as it takes into account wellbore storage 
(Papadopulos & Cooper, 1967). Both solutions assume linear flow governed by Darcy's law (DL) in 1-D radial 
flow models and neglect the mixing process inside the well. Despite these simplifications, they provide valuable 
insights into the spatial and temporal changes in drawdown behavior. The wellbore drawdown solutions for these 
two linear flow cases are:

𝑆𝑆𝐷𝐷 = 𝑊𝑊 (𝑟𝑟𝐷𝐷, 𝑡𝑡𝐷𝐷) (14)

𝑆𝑆𝐷𝐷 = 𝐹𝐹 (𝑟𝑟𝐷𝐷, 𝑡𝑡𝐷𝐷, 𝛼𝛼) (15)

where Equations 14 and 15 represent the Theis solution and Papadopulos solution, respectively. Notably, the 
latter includes the dimensionless variable of aquifer storativity α. Aquifers with higher storativity exhibit a more 
rapid and significant response in formation inflow.

Figure 3 illustrates the behavior of wellbore drawdown at various stages of pumping, comparing the numerical 
results with the Theis and Papadopulos solutions. In the early stages of pumping, the numerical results of the 
non-Darcy flow case and the Papadopulos solution show good agreement as they both account for wellbore 
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Figure 2. Wellbore flow field with different aquifer storativity α at time tD = 10 3, 10 4, and 10 5. Blue streamlines are aquifer inflow and green streamlines are downward 
casing flow.
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storage, while the Theis solution predicts a much larger drawdown. As pumping continues, the two Darcy flow 
cases gradually converge and overlap at late times, with the Papadopulos solution approach the Thesis solution, 
indicating a reduction in well storage effects. In contrast, the non-Darcy flow case gradually deviates from the 
Darcy flow cases, resulting in a higher drawdown due to the increased pressure head gradient required to over-
come the nonlinear term in the flow equation. As the system approaches a quasi-steady state and the wellbore 
storage effect diminishes, the non-Darcy flow case does not converge to the Darcy cases. These behaviors are 
consistently observed in Figure 3a for cases with varying aquifer storativity α and Figure 3b for cases with differ-
ent Forchheimer coefficient CF.

Figure 3a shows that for a given CF, the system with a higher α reaches the quasi-steady state more quickly (
𝐴𝐴 𝐴𝐴𝐷𝐷 ≈ 10

4
, 10

5
, and 10

6 for α = 2 × 10 −2, 2 × 10 −3, and 2 × 10 −4, respectively). However, all cases approach the 
same asymptotic value of drawdown, indicating that the asymptotic value is not controlled by aquifer storativity. 
Figure 3b presents different cases with various CF values, representing different degrees of nonlinearity in the flow. 
At CF = 0, representing a Darcy flow regime in the aquifer coupled with a RANS wellbore domain, the drawdown 
simulated by the numerical model closely matches the Papadopolos solution. The slight deviation is due to the 
wellbore flow, which will be discussed in Section 4.4. As CF increases from 0 to 1, the deviation of drawdown 
from the linear case becomes more significant, indicating that the asymptotic drawdown of the quasi-steady state 
is controlled by the Forchheimer coefficient CF due to the presence of larger inertial force and drag forces in the 
porous media, which consume more hydraulic pressure for fluid movement. Despite different CF values, all cases 
with α = 2 × 10 −3 reach the quasi-steady state at the same time (tD ≈ 10 5), further confirming the observation in 
Figure 3a that α controls the time for the wellbore storage to dissipate and the system to reach the quasi-steady state.

Figure  4 illustrates the aquifer drawdown behavior for different cases with varying values of CF and α. The 
temporal behavior of aquifer drawdown follows the same change pattern as the wellbore drawdown shown in 
Figure 3. In Figure 4a, the aquifer drawdown estimated by Theis solution overestimates the drawdown in the 
aquifer at tD = 10 4, consistent with the assumption that the aquifer provides 100% water from the start of pump-
ing and well storage is neglected. Figure 4b shows that Theis solution underestimates the drawdown at tD = 10 5 
compared to the multiphysics model due to the neglect of flow nonlinearity, which is in line with the behavior 
shown in Figure 3. Furthermore, larger nonlinearity in the flow leads to deeper cones of depression near the 
well. At large distances, as evidenced by the subfigure in Figure 4a, the cone with larger CF ends quicker. This 
is consistent with the conventional understanding that aquifers of low permeability develop deeper cones of 
narrower extent. As the distance from the well increases, the drawdown gradually decreases and approaches zero. 
Figures 4c and 4d shows that nonlinear cases yield larger drawdown compared to the linear cases represented by 
the Papadopulos solution. This is because the flow surrounding the well encounters more resistance in nonlinear 
cases. As pumping continues, the drawdown curves for cases with different storativity values converge, indicat-
ing the gradual dissipation of the well storage effect and the approach to a late-time solution that is independent 
of aquifer storativity. At large distances, both the linear and nonlinear cases reach asymptotic results due to the 
convergence of the ends of the cone of depression. This behavior will be further explained by the variable intro-
duced in Section 4.3.

Figure 3. Wellbore drawdown SD from numerical simulations for nonlinear flow and analytical solutions for linear flow. 
Green dots and line illustrate the time when reaching quasi-steady state. (a) Cases with different α. (b) Cases with different CF.
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4.3. Water Flow Ratio

To quantify the contributions of different water sources to the pumped water, the water flow ratio is defined as the 
ratio of aquifer inflow, Qaq, to the total pumping rate, Q (He et al., 2022; Hou & Luo, 2019):

𝜂𝜂𝑞𝑞 =
𝑄𝑄aq

𝑄𝑄
= 1 −

𝑄𝑄𝑤𝑤

𝑄𝑄
= 1 −

1

𝛼𝛼

𝜕𝜕𝜕𝜕𝑤𝑤𝑤𝑤

𝜕𝜕𝜕𝜕𝑤𝑤
 (16)

𝑄𝑄 = 𝑄𝑄aq +𝑄𝑄𝑤𝑤 (17)

where SwD is the normalized wellbore drawdown, and the sum of Qw and Qaq is the pumping rate Q. The value of 
ηq ranges from 0 to 1, with higher values indicating a greater contribution from aquifer inflow. It should be noted 
that ηq for the two linear flow cases can be analytically derived from Equations 14 and 15. However, since Theis 
solution completely neglects wellbore storage and assumes the abstraction well is a vertical line, ηq is always 1. 
Therefore, only the Papadopulos solution has a valid water flow ratio curve.

Figure 5a shows the gradual increase of ηq from 0 to 1. The effect of well storage is influenced by aquifer storativ-
ity α, with lower α resulting longer response times, consistent with the behavior observed in Figure 2. In particu-
lar, the first column of Figure 2 shows that the model with the lowest storativity α = 2 × 10 −4 has ηq = 0.02, while 
for the highest α case, 88% of pumped water is from the well casing. As indicated by Equation 2, the nonlinear 
term in the flow equation is positively correlated with the flux. During the initial stages of pumping, when the 
formation inflow is minimal, there is little difference between nonlinear and linear flow. However, as pumping 
continues, the nonlinear flow delays the aquifer to achieve higher inflow, leading to smaller values of ηq compared 
to the linear case. Once ηq reaches 1, which coincides with the time points where drawdown approaches the late 
time behavior shown in Figure 3a, the formation inflow at the screen matches the pumping rate, and the well 
storage effect dissipates as the system reaches a quasi-steady state. Figure 5b presents cases with increasing CF 

Figure 4. The behavior of aquifer drawdown profiles at different time moments for various cases. (a) tD = 10 4, α = 2 × 10 −3, 
and CF = 0, 0.55, and 1. (b) tD = 10 5, α = 2 × 10 −3, and CF = 0, 0.55, and 1. (c) tD = 10 4, CF = 0.55, and α = 2 × 10 −2, 
2 × 10 −3, and 2 × 10 −4. (d) tD = 10 5, CF = 0.55, and α = 2 × 10 −2, 2 × 10 −3, and 2 × 10 −4. Black dashed lines are Theis 
solution, and black dash-dotted lines are the Papadopulos solution.
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values, where the simulation results with CF = 0 closely align with the analytical solution for linear flow. Higher 
values of CF in non-Darcy flow indicate stronger nonlinearity, resulting in a longer aquifer response time and 
making it more challenging to abstract water from the aquifer and achieve higher wellbore drawdown, as observed 
in Figure 3b. The inverse relationship between vertical casing water and horizontal aquifer inflow signifies the 
difficulty in supplying outflow at the intake from both well storage and aquifer storage. This difficulty is most 
pronounced in scenarios with high CF and low α values. Hence, in engineering applications, analyzing the early-
time wellbore drawdown behavior is crucial for well design and construction. The variable ηq, which quantifies 
the contributions of different water sources to the pumped water, is essential and should not be neglected.

4.4. Nonlinearity Ratio

To examine the change of aquifer response induced by nonlinearity in non-Darcy flow, we introduce a dimension-
less nonlinearity ratio, R. The flow equation for non-Darcy flow from Equation 2 can be formulated as:

∇𝑆𝑆 = 𝒒𝒒𝟏𝟏

(
1

𝐾𝐾
+

𝛽𝛽|𝒒𝒒𝟏𝟏|

𝐾𝐾

)

= 𝒒𝒒𝟏𝟏

(
1

𝐾𝐾 ′

)

 (18)

where K′ is the equivalent conductivity for a non-Darcy flow scenario (Bear, 1988; Zimmerman et al., 2004). The 
difference between the original conductivity, K, and the equivalent conductivity, K′, is:

Δ𝐾𝐾 = 𝐾𝐾 −𝐾𝐾 ′ (19)

Due to the vertical flux being less significant in the aquifer, z component is neglected. The difference is normal-
ized by the original conductivity and rearranged with the help from Equations 12 and 13 to obtain the dimen-
sionless variable, R:

𝑅𝑅(𝑡𝑡𝐷𝐷) = 1 −
1

1 + 𝛽𝛽𝐷𝐷𝑞𝑞𝑟𝑟𝐷𝐷∕2
 (20)

The nonlinearity ratio, R, ranges from 0 to 1, with 0 representing Darcy flow and 1 representing highly nonlinear 
flow. Essentially, higher R values indicate a decrease in the equivalent conductivity of nonlinear flow, which 
requires a larger hydraulic gradient for flow movement near the well and leads to larger drawdown, as observed 
in Figure 3b. It is important to note that R is a time-dependent function due to the transient nature of qrD. At the 
quasi-steady state during late time, radial aquifer flow dominates the pumped water, and by considering continu-
ity at each cylindrical cross-section, we can approximate qrD as:

|𝑞𝑞1𝑟𝑟| =
𝑄𝑄

2𝜋𝜋𝜋𝜋𝑟𝑟
 (21)

𝑞𝑞𝑟𝑟𝑟𝑟 =

2

𝑟𝑟𝑟𝑟
 (22)

Figure 5. Water flow ratio ηq with different α, from numerical simulations for nonlinear flow and analytical solutions for 
linear flow. (a) Cases with different α. (b) Cases with different CF.
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Hence, the expression for R at late time is given by:

𝑅𝑅(𝑡𝑡𝐷𝐷 → ∞) = 1 −
1

1 + 𝛽𝛽𝐷𝐷∕𝑟𝑟𝐷𝐷
 (23)

A threshold value of R = 5% is defined to determine a critical distance, 𝐴𝐴 𝐴𝐴crit

𝐷𝐷
 , for distinguishing between nonlinear 

and linear flow regions. Regions with R < 5% are governed by DL, while regions with R ≥ 5% are considered 
nonlinear flow regions. By substituting the threshold value of R into Equation 23, we can obtain the critical 
distance at quasi-steady state:

𝑟𝑟crit

𝐷𝐷
(𝑡𝑡𝐷𝐷 → ∞) = 19 𝛽𝛽𝐷𝐷 (24)

and

⎧
⎪
⎨
⎪
⎩

𝑟𝑟𝐷𝐷 > 𝑟𝑟crit
𝐷𝐷
, Darcy

𝑟𝑟𝐷𝐷 ≤ 𝑟𝑟crit
𝐷𝐷
, non–Darcy

 (25)

Equations 24 and 25 provide a simple criterion to delineate Darcy and non-Darcy zones for a pumping well 
system. For the parameter values in the base case presented in Table 1, 𝐴𝐴 𝐴𝐴crit

𝐷𝐷
 at quasi-steady state is calculated to be 

12.27. This implies that for the base case, DL is applicable for r values greater than 3.68 m.

Figure 6 shows the spatial and temporal behavior of R (also see Figure S1 in Supporting Information S1). R is 
not constant but varies spatially, with higher values near the well screen and decreasing values as one moves 
away from the well (rD  =  1). This indicates a transition from nonlinear flow to Darcy flow as groundwater 
moves farther from the well, where R approaches 0. The nonlinear flow region expands as pumping progresses 
and eventually approaches the quasi-steady state described by Equation 23. The subfigures in the upper section 
illustrate that the nonlinear flow regions expand as CF increases with a higher value of R at the same time. The 
lower section demonstrates that higher α leads to a faster response of the formation to pumping and a more rapid 
growth of the nonlinear flow region. The model with the highest α almost reaches the quasi-steady state almost 
at tD = 10 3, while the nonlinear region for case with the lowest α fails to stabilize even at tD = 10 5 (also shown in 
Figure S2 in Supporting Information S1).

Figure 7 provides insights into the behavior of the critical distance, 𝐴𝐴 𝐴𝐴crit

𝐷𝐷
 , as a function of time. It confirms that 

𝐴𝐴 𝐴𝐴crit

𝐷𝐷
 increases over time and approaches a steady-state value, as defined by Equation 24. This observation rein-

forces the understanding that the nonlinear flow region expands as pumping progresses and eventually reaches a 
quasi-steady state. Additionally, Figure 7 demonstrates that aquifers with higher values of CF have larger nonlin-
ear regions and yield large values of 𝐴𝐴 𝐴𝐴crit

𝐷𝐷
 at late times. This suggests that the presence of stronger nonlinearity in 

the flow, represented by higher CF values, extends the nonlinear flow region and requires larger critical distances 
for delineating Darcy and non-Darcy zones. On the other hand, the figure also illustrates that aquifers with higher 
values of aquifer storativity α, 𝐴𝐴 𝐴𝐴crit

𝐷𝐷
 approaches the quasi-steady state more quickly due to the faster response time 

of the aquifer storage to the pumping and a more rapid establishment of the steady-state condition.

4.5. Entrance Velocity Profile

Figures 8a–8c shows the velocity profiles along the well screen for models with different CF values of 0.2, 0.55, 
and 1. Smaller CF values lead to larger velocity magnitudes during the initial pumping stage and faster aquifer 
response times. The numerical model reveals that qrD is not uniformly distributed along the well screen. Instead, 
the peak value occurs at the height of the pump intake, which is the center of the screen (zD = 0.5). The vortex 
formed at the intake height (as seen in Figure 2) accelerate the inflow velocity below the intake and decelerate 
the inflow velocity above the intake. This entrance velocity profile is consistent with field experimental data 
collected by Church and Granato (1996), Elci et al. (2001), and VonHofe and Helweg (1998). We believe it is a 
widespread phenomenon, especially for high pumping rates, which correspond to non-Darcy flow in the aquifer 
and turbulent flow in the wellbore. The disproportionately distributed stress field at the screen passes to the 
aquifer domain, where 2-D flow occurs in the vicinity of the wellbore. The resistance encountered by ground-
water particles is amplified by increasing nonlinearity of the flow, resulting in smaller value of ηq. As pumping 

 19447973, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035453 by G

eorgia Institute O
f T

echnology, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

HE ET AL.

10.1029/2023WR035453

12 of 18

progresses to late times, qrD approaches 2 for all cases (excluding the intake height where vortex acceleration and 
deceleration of qrD occur), as illustrated in Equation 22. The pumped out water is 100% of the formation water as 
a results of ηq reaching 1.

Figures 8d–8f highlights that, given the same nonlinearity of the flow, the varying inflow velocity distribution 
along the screen creates varying aquifer response time. The model with the highest pumping rate Q produces the 
largest inflow spike, while the model with a lower pumping rate 0.6Q has the smallest spike, resulting in more 

Figure 7. Transient behavior of 𝐴𝐴 𝐴𝐴crit

𝐷𝐷
 (a) Effect of CF; and (b) Effect of α.

Figure 6. Simulated nonlinear flow regions with various combinations of CF and α at tD = 10 3, 10 4, and 10 5. Dashed black 
lines represent R at quasi-steady state.
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formation vertical flow being generated and increasing the travel distance for water particles toward the well. To 
conclude, when there is a smaller inflow spike at the screen, it leads to a quicker aquifer response time (resulting 
in a larger ηq for smaller Q) and fewer vertical flow in the formation, indicating that wellbore storage is a more 
tangible source compared to aquifer storage at larger pumping rates. It should be noted that the effect of the larger 
spike is overshadow by the decreased nonlinearity in cases with different CF. Simulations with different pump 
intake positions (ht) in the screen were conducted. As shown in Figures 8g–8i, the entrance velocity profiles 
demonstrate a similar trend as previously observed, with a peak value at the intake height and non-uniform 
distribution along the screen. While the peak value moves with intake position height, the overall hydraulic 
performance of the well remains the same, as indicated by identical wellbore drawdown SD and ηq in Figure S4 in 
Supporting Information S1. This occurs because although velocity profiles change, the nonlinearity of the flow 
and the spikiness of the inflow velocity remain constant. In other words, the aquifer response time and wellbore 
drawdown are unaffected by changes in intake position height. However, it is worth noting that the variation of 
the flow field with intake position could produce different concentration responses if solute transport inside the 
well were considered.

Figure 8. Numerical model inflow velocity profile along the screen. zD = z/b is the dimensionless height where zD = 0 is at the bottom and zD = 1 is at the top of the 
screen. The pump intake is placed at the center of the screen, that is, zD = 0.5. Cases with varies CF, Q and ht at three time frames are presented.
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Pumping in well casing is simulated and presented in Supporting Information S1. Based on the results in Figure 
S5 in Supporting Information S1, when the intake is positioned above the screen by half of the screen length, 
there is a slight non-uniformity in the formation inflow. However, the aquifer response time remains unaffected 
by the intake position. The entrance velocity profile exhibits an increasing trend from the bottom to the top of 
the screen, with a 2% deviation between the top and the bottom. The field study conducted by VonHofe and 
Helweg (1998) observed a larger deviation of 40% in the entrance velocity profile between the top and the bottom. 
It is important to note that the field study positioned the pump intake above the screen by only one-tenth of the 
screen length in a smaller well. As the intake is moved closer to the screen, the impact of the vortex formation 
and the irregular distribution of the stress field along the screen become more significant, potentially leading to 
a more pronounced non-uniformity in the entrance velocity profile and affecting the overall hydraulic behavior 
within the well system.

5. Simplified Model
5.1. 1-D Flow Model

Previous works investigating wellbore storage effects have mostly neglected the flow and mixing process inside 
the well and assumed that the inflow velocity is distributed uniformly along the screen. Therefore, conceptual 
models presented in Figure 1 typically adopt 1-D models with the outlet boundary at the screen defined based on 
the assumption that the pumping rate is equal to the sum of the rate of formation inflow and the rate of decrease in 
volume of well storage (e.g., Papadopulos & Cooper, 1967). To facilitate comparison with the 2-D axisymmetric 
multiphysics model simulation results, we present a simplified 1-D mathematical model that couples non-Darcy 
flow and well storage effects without accounting for the wellbore flow field.

Assuming that the flux is uniformly distributed along the radial cross section and that the formation water is 
released from the aquifer as the pressure head declines, the continuity equation Equation 1 in axisymmetric cylin-
drical coordinates can be expressed as follows:

𝜕𝜕𝜕𝜕𝐷𝐷

𝜕𝜕𝜕𝜕𝐷𝐷
= −

1

4𝑟𝑟𝐷𝐷

𝜕𝜕

𝜕𝜕𝑟𝑟𝐷𝐷
(𝑟𝑟𝐷𝐷𝑞𝑞𝑟𝑟𝐷𝐷) (26)

subjected to boundary and initial conditions:

1

𝛼𝛼

𝜕𝜕𝜕𝜕𝑤𝑤𝑤𝑤

𝜕𝜕𝜕𝜕𝑤𝑤
+

1

2

𝑞𝑞𝑤𝑤𝑤𝑤 = 1 (27)

𝑆𝑆𝑤𝑤𝑤𝑤 = 𝑆𝑆𝑤𝑤(1, 𝑡𝑡), 𝑞𝑞𝑤𝑤𝑤𝑤 = 𝑞𝑞𝑟𝑟𝑤𝑤(1, 𝑡𝑡) (28)

𝑆𝑆𝐷𝐷(𝑟𝑟𝑒𝑒𝐷𝐷, 𝑡𝑡𝐷𝐷) = 0 (29)

𝑆𝑆𝐷𝐷(𝑟𝑟𝐷𝐷, 0) = 0 (30)

The flow Equation 2 becomes:

1

2

𝛽𝛽𝐷𝐷𝑞𝑞
2

𝑟𝑟𝐷𝐷
+ 𝑞𝑞𝑟𝑟𝐷𝐷 +

𝜕𝜕𝜕𝜕𝐷𝐷

𝜕𝜕𝑟𝑟𝐷𝐷
= 0 (31)

where reD is the radial coordinate of the constant head boundary, qrD [L/T] is the 1-D radial flux.

5.2. 1-D Finite-Difference Approach

The finite-difference method has been widely applied to study non-Darcy flow to an injection/production well 
(Ewing et al., 1999; Ewing & Lin, 2001; Kolditz, 2001). In order to provide a computationally cheaper alterna-
tive to the finite-element model, we propose a 1-D finite-difference approach to directly solve for the behavior of 
nonlinear flow in a pumping system. The aquifer domain is discretized into J circular cross sections in an axisym-
metric cylindrical coordinate system, spaced logarithmically. The first section (j = 1) is at the screen and the last 
section (j = J) is at the constant head boundary of a large distance from the well. Odd numbered sections (ith) 
are designated as monitoring wells, where transient drawdowns are analyzed, while the flux at even numbered 
sections is defined as the continuum representation between two adjacent monitoring wells. The entire system is 
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then represented mathematically by a set of ordinary differential equations formulated at each section. Notice that 
all variables subscripted with i and j are dimensionless from Equations 26–31.

𝜕𝜕𝜕𝜕𝑖𝑖

𝜕𝜕𝜕𝜕𝐷𝐷
≈ −

(𝑟𝑟2𝑖𝑖𝑞𝑞𝑖𝑖 − 𝑟𝑟2𝑖𝑖−2𝑞𝑞𝑖𝑖−1)

4𝑟𝑟2𝑖𝑖−1(𝑟𝑟2𝑖𝑖 − 𝑟𝑟2𝑖𝑖−2)
𝑖𝑖 = 2, 3, 4. . .

𝐽𝐽 − 1

2
 (32)

Non-Darcy flux passes through a monitoring well would be:

𝑞𝑞𝑖𝑖 =
1

𝛽𝛽𝐷𝐷

⎧
⎪
⎨
⎪
⎩

−1 + [1 − 2𝛽𝛽𝐷𝐷

(
𝑆𝑆𝑖𝑖+1 − 𝑆𝑆𝑖𝑖

𝑟𝑟2𝑖𝑖+1 − 𝑟𝑟2𝑖𝑖−1

)

]

1

2

⎫
⎪
⎬
⎪
⎭

𝑖𝑖 = 1, 3, 4. . .

𝐽𝐽 − 1

2
 (33)

The constant head boundary (rJ) is implemented as:

𝜕𝜕𝜕𝜕(𝐽𝐽+1)∕2

𝜕𝜕𝜕𝜕𝐷𝐷
= 0 (34)

At the well screen (rwD = r1), from Equation 27, we have:

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕𝐷𝐷
≈ 𝛼𝛼

(

1 −
𝑞𝑞1

2

)

 (35)

We compared the finite-difference approach with two published methods (Mathias et al., 2008; Wen et al., 2008) 
for simulating non-Darcy flow in pumping scenarios, and provided detailed discussion in Text S1 and S2 and 
Figure S3 in Supporting Information S1.

5.3. Comparison With the 2-D Axisymmetric Numerical Model

While our 1-D finite-difference approach effectively delineates the drawdown behaviors at early times and 
demonstrates that nonlinearity results in more resistance to flow near the well, it does not account for the effects 
of wellbore flow field. The presence of wellbore flow field can modify the inflow velocity profile and introduce 
2-D flow phenomena in the aquifer, including radial and vertical flow, as discussed in the previous section.

Figure  9a compares the results of 2-D multiphysics simulations and the 1-D finite-difference solution. The 
numerical model predicts a larger wellbore drawdown, indicating that well storage provides more water at 
early times. This is further supported by Figure 9b, which shows that the aquifer response time is slower in the 
finite-difference approach, indicating a smaller value of ηq. Discrepancies in the results approximately begin to 
appear at tD = 10 4 and stop growing at tD = 10 5, which is the same period when nonlinear flow deviates from 
Darcy flow (as shown in Figures 2 and 4) because ηq is large enough to amplify effect from the wellbore flow 
and the aquifer flow nonlinearity. Moreover, larger CF values result in wider gaps between the two approaches, 
suggesting that the discrepancy grows with higher levels of nonlinearity. These observations are attributed to the 
presence of unidentified 2-D flow effects.

Entrance velocity profiles in Figures  8a–8c show that the spikes pass to the aquifer domain and yield 2-D 
flow. This results in groundwater particles traveling longer paths to the screen and experience larger resistance 

Figure 9. Comparison between 2-D multiphysics numerical model (solid lines) and 1-D finite-difference approach (dashed 
lines). (a) Wellbore drawdown. (b) Water flow ratio. (c) Aquifer drawdown with CF = 0.55.
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compared to the 1-D flow model. To compensate for the slower aquifer response time, more casing water from the 
well storage must be pumped out during this period, leading to larger wellbore drawdown. The resistance induced 
by the longer path line is amplified by increasing nonlinearity of the flow, enhancing the discrepancy between the 
1-D finite-difference approach and the 2-D numerical model depicted in Figure 9. The gap between the two stops 
growing as a results of ηq reaching 1 at quasi-steady state, which means that the well storage effect dissipates. 
Similar trends can be observed in Figure 9c, that is, the 2-D flow effect is amplified as aquifer inflow becomes 
the predominant source of the pumped water and ends as reaching quasi-steady state. Spatially, the discrepancy 
diminishes as moving away from the well due to the transition to the 1-D uniform flow at large distances.

6. Conclusions
The present study develops a novel multiphysics numerical model to investigate the hydraulic behavior of well 
systems considering wellbore storage effects and non-Darcy flow. To quantify wellbore storage effects, the study 
uses a RANS model coupled with a moving free surface to simulate the turbulent flow and drawdown in the 
wellbore. Hydraulic behavior investigated include drawdown in the pumping well and aquifer, pumped water 
ratio, aquifer flow nonlinearity ratio, and wellbore flow field. These hydraulic behaviors are compared with those 
from simplified 1-D models, including Thesis solution, Papadopulos solution, and a 1-D non-Darcy flow model 
coupled with well storage effects. The study highlights the following key findings:

•  Non-Darcy flow, coupled with the effect of well storage, leads to higher drawdown in the pumping well 
compared to Darcy flow cases. As the system approaches quasi-steady state, the wellbore drawdown in 
non-Darcy cases does not converge to Darcy cases. The deviation of the asymptotic drawdown increases with 
the Forchheimer coefficient CF. The aquifer drawdown has the same temporal pattern as the wellbore draw-
down, but the deviation decreases at large distances due to the limitations of the cone of depression.

•  The pumped water ratio, ηq, indicates the challenge of supplying outflow at the intake from aquifer storage. 
During the initial pumping stage, ηq is almost the same for the multiphysics model and the Papadopulos solu-
tion because most of the pumped water comes from well storage. However, as pumping continues, the nonlin-
ear flow has a smaller ηq due to the difficulty of the aquifer to achieve higher inflow compared to the linear 
case. At late times, ηq reaches 1 as the well storage effect dissipates and the system approaches quasi-steady 
state. The effect is more significant for large CF values. Higher aquifer storativity leads to a quicker aquifer 
response time, causing the wellbore storage effect to dissipate faster, and the system reaches quasi-steady state 
earlier.

•  The nonlinearity ratio, R, measures the disparity between the formation conductivity and the equivalent 
conductivity of nonlinear flow. A higher value of R indicates increased flow resistance and a smaller equiv-
alent aquifer conductivity. This ratio varies temporally and spatially. As pumping progresses, a quasi-steady 
state is achieved for the nonlinear flow region, with the transition from non-Darcy flow to Darcy flow occur-
ring further away from the wellbore. By defining a threshold value for R, a critical distance of 19βD can be 
determined to distinguish between the nonlinear and linear flow regions. As the Forchheimer coefficient CF 
increases, the nonlinear flow regions expand, indicating a greater influence of non-Darcy flow.

•  The presence of a large Reynolds number and turbulent flow around the intake of the pumping well leads to 
the formation of a vortex in the in-well flow fields. This vortex is observed due to the uneven distribution of 
stress at the screen, which extends into the aquifer and induces 2-D flow near the well. As a result, ground-
water particles travel longer paths to reach the screen, leading to increased hydraulic pressure consumption 
compared to the 1-D finite-difference approach. This phenomenon is more pronounced at higher pumping 
rates and larger values of CF, but diminishes as the wellbore storage is depleted. The height of the intake 
within the well has a significant impact on the wellbore flow field. Pumping inside the screen promotes more 
2-D formation flow, while adjusting the intake position higher in the casing results in a more uniform entrance 
velocity profile.

The study contributes to our understanding of the hydraulic behavior of well systems in high Reynolds number 
scenarios by simultaneously considering turbulent flow in the wellbore and non-Darcy flow in the aquifer for 
the first time, and provides insights for various geophysical engineering activities. In particular, the presence of 
nonlinearity of the flow and wellbore storage effect increases well and aquifer drawdown, and delays the time for 
system to reach quasi-steady state. Mueller and Witherspoon (1965) suggested that the Theis solution can be used 
to predict the pressure response at radius ratios of 20 or above, or after a dimensionless time of 50, but the validity 
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of its application needs to be re-evaluated in the context of pumping tests or well interference tests involving 
non-Darcy flow. Based on the study's findings, it is recommended to use the Theis solution at a greater distance 
away from the well or after a longer pumping time for nonlinear flow conditions. It shall be noticed that the study 
focuses on high Reynolds number scenarios only. However, by replacing RANS with NS and Non-Darcy with 
Darcy flow, the coupled multiphysics model is also applicable for accessing concentration response and optimiz-
ing groundwater sampling techniques at low Reynolds number. Future research directions include exploring the 
application of the model to stratified aquifers and heterogeneous fields, as well as investigating concentration 
responses and optimizing groundwater sampling techniques. The study does not consider well loss and skin effect 
in the simulation, both of which may have significant effects in practice. Field and laboratory investigations are 
needed to validate and further explore the hydraulic behavior of pumping well systems in high Reynolds number 
scenarios.

Data Availability Statement
All data presented in this study were simulated using COMSOL Multiphysics®, a commercial finite element 
analysis and solver software, https://www.comsol.com. No additional data from external sources were used in 
the analysis. The comprehensive data set underlying this research article is available for access through the 
open-access repository, as outlined in He et al. (2023).
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