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Groundwater Inverse Modeling

Inverse model

y s

𝐟 𝐬

𝐠 𝐲 ≅ 𝐟−𝟏 𝐲

ill-posed

well-posed

𝐲 = 𝐟 𝐬 + 𝛜

𝐲 − Available measurements, ∈ ℝn×1

𝐟 − A deterministic model (such as governing PDE in physical system)

𝐬 − Interested variables or parameters in forward model, ∈ ℝm×1

𝛜 − Noise term caused by measurement error, limitation of exactness
∈ ℝn×1 ≪ ℝm×1 ∋

Forward model

General model for measurable system

To solve inverse problem, we usually need implement 

iterative method and introduce regularization based 

on background knowledge.



Groundwater inverse modeling
Groundwater physical system

s – hydraulic transmissivity (T)
its natural logarithm (lnT)

• Large scale – field sites

• Large-dimensional – 106 unknowns

• Dozens of measurements (sparse)

• Spatially-correlated – geostatistics

Inverse model

y s

𝐲 = 𝐟 𝐬

𝐬 ≅ 𝐟−𝟏 𝐲

ill-posed

well-posed

∈ ℝn×1 ≪ ℝm×1 ∋

y – hydraulic heads (h)

• Point measurements – fixated 
locations 

• Solved by finite element method 
with hydrological and hydraulic 
parameters well known

• Hundreds of measurements

Forward model



Groundwater Inverse Modeling

𝑆𝑠
𝜕ℎ

𝜕𝑡
= −𝛻 ∙ 𝐪 + 𝑄 Mass conservation 

𝐪 = 𝑇𝛻ℎ Darcy’s Law

For non-pumping grid:       𝛻 ∙ [𝑇 𝑥𝑒 , 𝑦𝑒 𝛻ℎ 𝑥𝑒 , 𝑦𝑒 ] = 0, 𝑥𝑒 , 𝑦𝑒 ∈ 𝛺

For pumping grid:              𝛻 ∙ 𝑇 𝑥𝑝, 𝑦𝑝 𝛻ℎ 𝑥𝑝, 𝑦𝑝 = 𝑄𝑝, (𝑥𝑝, 𝑦𝑝) ∈ 𝛺

Neumann boundary:          𝐧 ∙ 𝛻ℎ 𝑥𝑁 , 𝑦𝑁 = 𝑞𝑁, 𝑥𝑁, 𝑦𝑁 ∈ 𝛤𝑁

Dirichlet boundary:            ℎ 𝑥𝐷 , 𝑦𝐷 = ℎ𝐷, 𝑥𝐷 , 𝑦𝐷 ∈ 𝛤𝐷

Conditions of a pumping event, :

1. Pumping at one location − 𝑥𝑝, 𝑦𝑝
2. Constant pumping rate − 𝑄𝑝
Simplifications:

1. Steady state −
𝜕ℎ

𝜕𝑡

2. 2D domain − 𝑥, 𝑦
3. Isotropic and confined aquifer

𝑆𝑠 − specific storage; ℎ − hydraulic head; 𝑇 − hydraulic transmissivity; 𝐪 − flux; 𝑄 − source/sink

Groundwater physical system

ℎ = FEM(𝑇; 𝛤𝑁, 𝛤𝐷)



Groundwater Inverse Modeling
Geostatistical Approach – Bayesian Inference
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Groundwater Inverse Modeling
Geostatistical Approach – Bayesian Inference



Groundwater Inverse Modeling

Computaional complexity of ഥ𝐇𝐂ഥ𝐇T + 𝐑 is 𝑂(𝑚𝑛2),
which is not scalable to 𝑛, i.e., dimension of s.

Geostatistical Approach – MAP Solution



Groundwater Inverse Modeling

• Large-dimensional inverse problem: up to millions of unknown variables

• Storage of matrices: covariance matrices: 𝑂(𝑛2)
• Matrix computation: 𝑂(𝑚𝑛2)
• Determination of Jacobian matrices: 𝑂(𝑚𝑛)

• Non-Gaussian posterior due to the complexity and non-linearity of 𝐟(𝐬)
• Large number of iterative forward model runs for nonlinear inverse problems

• High computational cost of each forward model run on large-dimensional parameters fields

A Recent USGS Case:

Inversion of a 21×21×52 hydraulic conductivity field given 4,000 transient drawdown measurements 

took 18 days with the help of massive parallelization on the USGS high-performance computing 

facilities, and may require 140 days on desktop computers [Tiedeman and Barrash, 2019].

Geostatistical Approach – Bottleneck



Groundwater Inverse Modeling

• New framework and computational approaches for geostatistical approach (GA):

• Apply principal component analysis (PCA) to reduce problem dimension.

• Reformulate the geostatistical approach onto principal component coefficients (RGA).

[Zhao and Luo, 2020]

Geostatistical Approach – Improvements



Groundwater Inverse Modeling

As 𝑘 is usually a small number, computational complexity of ഥ𝐇𝐚𝐂ഥ𝐇𝐚
T
+ I is 𝑂 𝑛 .

This RGA algorithm is much more scalable!

Reformulated Geostatistical Approach – Achievements



More Efficient & Scalable Model?

Hope to find a pointwise, continuous function to approximate the spatial variables:

𝐹(𝑥, 𝑦) ≅ ℎ 𝑥, 𝑦
𝐺(𝑥, 𝑦) ≅ 𝑇 𝑥, 𝑦

In 2019, Physics-Informed Neural Network (PINN) was borned.

What type of function should it be?

Ploynomial? Exponential? or more complicated form?

Matrix-wise to Pointwise Estimator

[Raissi., et al, 2019] 



Physics-Informed Neural Network

Neural network is a (recurrent) nonlinear regression model with learnable coefficients.

Deep Neural Network

𝒉1 = 𝜎0 𝑾0𝒙 + 𝒃0 𝒙 is input variable vector; 

𝒉2 = 𝜎1 𝑾𝒉1 + 𝒃1 𝒚 is predicted output vector; 

…… 𝒉𝑖 is hidden feature vector;

𝒉𝑛 = 𝜎𝑛−1 𝑾𝑛−1𝒉𝑛−1 + 𝒃𝑛−1 𝜎𝑖(∙) is chosen nonlinear map;

𝒚 = 𝜎𝑛 𝑾𝑛𝒉𝑛 + 𝒃𝑛 𝑾𝑖 is learnable weight matrix;

𝒚 = 𝑓𝑛 𝑓𝑛−1 (…𝑓1(𝑓0(𝒙)) 𝒃𝑖 is learnable bias vector.

Neural network can become a universal function approximator as its depth is sufficiently 
large, e.g., deep neural network (DNN).

DNN usually has a lot of coefficients, the number can be up to billions.

[Goodfellow, I., 2016] 



Physics-Informed Neural Network

Training DNN means learn the value of 𝑾𝑖and 𝒃𝑖 to make predictions closet to data.

This data fitting process is not much different from regression. 

DNN training

Loss function: mean squared error 𝑙 =
1

𝑚
σ𝑗=1..𝑚 ෝ𝒚𝑗 − 𝒚𝑗

2

2

Optimizer: Newton method 𝜽𝑖
𝑘+1 = 𝜽𝑖

𝑘 + 𝜂
𝜕𝒍

𝜕𝜽𝑖
𝑘 ; 𝜽𝑖 = {𝑾𝑖; 𝒃𝑖}

To obtain a robust DNN model, it requires fast computation and large amount of data. 
Otherwise, it is easily overfitting since there are too many coefficients in the model.



Physics-Informed Neural Network

In physical systems, the measurements are very sparse, which cannot afford the learning of DNN.

To make DNN applicable to such predictive tasks, we must use physical constraints coming from:

Physical Constraints

Governing equations

Boundary condictions

Expert knowledge

ℒ 𝑦, 𝑥 = 0
𝜕𝑦

𝜕𝑥
(𝑥 ∈ Ω𝑁); 𝑦(𝑥 ∈ Ω𝐷)

𝑦 ≥ 𝑦𝑚𝑖𝑛

PDE related!

Can DNN learn from these PDE value?



Physics-Informed Neural Network

In physical systems, the measurements are very sparse, which cannot afford the learning of DNN.

To make DNN applicable to such predictive tasks, we must use physical constraints coming from:

Physical Constraints

Governing equations

Boundary condictions

Expert knowledge

ℒ 𝑦, 𝑥 = 0
𝜕𝑦

𝜕𝑥
(𝑥 ∈ Ω𝑁); 𝑦(𝑥 ∈ Ω𝐷)

𝑦 ≥ 𝑦𝑚𝑖𝑛

PDE related!

Can DNN learn from these PDE value? Yes!



Physics-Informed Neural Network

In physical systems, the measurements are very sparse, which cannot afford the learning of DNN.

To make DNN applicable to such predictive tasks, we must use physical constraints coming from:

Physical Constraints

Governing equations

Boundary condictions

Expert knowledge

ℒ 𝑦, 𝑥 = 0
𝜕𝑦

𝜕𝑥
(𝑥 ∈ Ω𝑁); 𝑦(𝑥 ∈ Ω𝐷)

𝑦 ≥ 𝑦𝑚𝑖𝑛

PDE related!

Can DNN learn from these PDE value? Yes!

How?



Physics-Informed Neural Network

In physical systems, the measurements are very sparse, which cannot afford the learning of DNN.

To make DNN applicable to such predictive tasks, we must use physical constraints coming from:

Physical Constraints

Governing equations

Boundary condictions

Expert knowledge

ℒ 𝑦, 𝑥 = 0
𝜕𝑦

𝜕𝑥
(𝑥 ∈ Ω𝑁); 𝑦(𝑥 ∈ Ω𝐷)

𝑦 ≥ 𝑦𝑚𝑖𝑛

PDE related!

Can DNN learn from these PDE value? Yes!

How? Use automatic differentiation



Physics-Informed Neural Network
Backpropagation

Considering:

𝒚 = 𝑓𝑛 𝑓𝑛−1 (…𝑓1(𝑓0(𝒙)) = 𝐹 𝒙; 𝜽

Automatic

Differentiation

(AD)

Apply chain rule on gradient computation:

𝜕𝑙

𝜕𝜽𝒊
=

𝜕𝑙

𝜕𝒚

𝜕𝒚

𝜕𝜽𝒊

=
𝜕𝑙

𝜕𝒚

𝜕𝒚

𝜕𝒉𝑛

𝜕𝒉𝑛

𝜕𝒉𝑛−1
…

𝜕𝒉𝑖

𝜕𝜽𝒊

= 𝑔′𝑓𝑛
′𝑓𝑛−1

′ …𝑓𝑖
′

= 𝑔′𝐹𝜽𝑖 𝒙; 𝜽

To learn coefficients minimizing the loss, we need to compute the gradients:

𝜽𝑖
𝑘+1 = 𝜽𝑖

𝑘 + 𝜂
𝜕𝒍

𝜕𝜽𝑖
𝑘

Gradient w.r.t. 𝜽𝑖 can be backpropagated from loss function:

𝑙 = 𝑔 𝒚, ෝ𝒚

(Update coefficients at i-th layer in DNN)



Physics-Informed Neural Network
Approximation of partial derivatives

Leverage AD from output to input variables:

𝒚 = 𝑓𝑛 𝑓𝑛−1 (…𝑓1(𝑓0(𝒙)) = 𝐹 𝒙; 𝜽

𝜕𝒚

𝜕𝒙
=

𝜕𝐹(𝒙;𝜽)

𝜕𝒙

=
𝜕𝒚

𝜕𝒉𝑛

𝜕𝒉𝑛

𝜕𝒉𝑛−1
…

𝜕𝒉1

𝜕𝒙
⇐ chain rule

= 𝑓𝑛
′𝑓𝑛−1

′ …𝑓1
′

= 𝐹𝑥 𝒙; 𝜽

𝐹𝑥 𝒙; 𝜽 can be used to approximate the first order partial derivitives.

For second order derivitives, we simply do it again: 
𝜕𝟐𝒚

𝜕𝒙𝟐
=

𝜕𝐹𝑥 𝒙;𝜽

𝜕𝒙
= 𝐹𝑥𝑥 𝒙; 𝜽

𝐹, 𝐹𝑥 and 𝐹𝑥𝑥 share the same set of coefficients 𝜽



Groundwater PINN

𝛻 ∙ 𝑇 𝑥𝑒 , 𝑦𝑒 𝛻ℎ 𝑥𝑒 , 𝑦𝑒 = 0, 𝑥𝑒 , 𝑦𝑒 ∈ 𝛺

𝛻 ∙ 𝑇 𝑥𝑝, 𝑦𝑝 𝛻ℎ 𝑥𝑝, 𝑦𝑝 = 𝑄𝑝, 𝑥𝑝, 𝑦𝑝 ∈ 𝛺

𝐧 ∙ 𝛻ℎ 𝑥𝑁, 𝑦𝑁 = 𝑞𝑁 , 𝑥𝑁 , 𝑦𝑁 ∈ 𝛤𝑁

ℎ 𝑥𝐷, 𝑦𝐷 = ℎ𝐷, 𝑥𝐷, 𝑦𝐷 ∈ 𝛤𝐷

𝑥𝑖

𝑦𝑖

ℎ𝑖

Forward Model PINN

𝛻 ∙ [𝑇 𝑥𝑒 , 𝑦𝑒 𝛻𝑁𝑁 𝑥𝑒 , 𝑦𝑒 ] = 0, 𝑥𝑒 , 𝑦𝑒 ∈ 𝛺

𝛻 ∙ 𝑇 𝑥𝑝, 𝑦𝑝 𝛻𝑁𝑁 𝑥𝑝, 𝑦𝑝 = 𝑄𝑝, (𝑥𝑝, 𝑦𝑝) ∈ 𝛺

𝐧 ∙ 𝛻𝑁𝑁 𝑥𝑁, 𝑦𝑁 = 𝑞𝑁, 𝑥𝑁 , 𝑦𝑁 ∈ 𝛤𝑁

𝑁𝑁 𝑥𝐷 , 𝑦𝐷 = ℎ𝐷, 𝑥𝐷 , 𝑦𝐷 ∈ 𝛤𝐷

Design a neural network 𝑁𝑁 with spatial coordinates (𝑥, 𝑦) as input and water heads under pumping test (ℎ) as output

Besides, we have some monitored water heads: 

𝑁𝑁 𝑥𝑚, 𝑦𝑚 = ℎ𝑚, 𝑥𝑚, 𝑦𝑚 ∈ 𝛺

Physical 

constraints

Data

Match



𝑥𝑖

𝑦𝑖

ℎ𝑖
AD

𝜕ℎ𝑖
𝜕𝑥𝑖

𝜕ℎ𝑖
𝜕𝑦𝑖

AD

AD

𝜕2ℎ𝑖

𝜕𝑥𝑖
2

𝜕2ℎ𝑖

𝜕𝑦𝑖
2

+

∗

𝑇𝑖
𝜕2ℎ𝑖

𝜕𝑥𝑖
2 +

𝜕2ℎ𝑖

𝜕𝑦𝑖
2

+
𝜕ℎ𝑖
𝜕𝑥𝑖

𝜕𝑇𝑖
𝜕𝑥𝑖

+
𝜕ℎ𝑖
𝜕𝑦𝑖

𝜕𝑇𝑖
𝜕𝑦𝑖

𝜕ℎ𝑁𝑒𝑢𝑚

𝑄𝑝

Backpropagation

𝑙𝑜𝑠𝑠𝐷 𝑙𝑜𝑠𝑠𝑁 𝑙𝑜𝑠𝑠𝑒

Total Loss

ℎ𝐷𝑖𝑟𝑖

𝑙𝑜𝑠𝑠𝑚

ℎ𝑚

Groundwater PINN
Forward PINN Pathway

Assume transmissivity 

field 𝑇𝑖 is fully known

Collocation data

𝜕𝑇𝑖
𝜕𝑥𝑖

𝜕𝑇𝑖
𝜕𝑦𝑖

+

∗

AD

𝑇𝑖

+

𝑙𝑜𝑠𝑠𝑒
Weighted

Sum



Groundwater PINN
Train Forward PINN

𝛻 ∙ 𝑇 𝑥𝑝, 𝑦𝑝 𝛻𝑁𝑁 𝑥𝑝, 𝑦𝑝 = 𝑄𝑝, 𝑥𝑝, 𝑦𝑝 ∈ 𝛺

𝐧 ∙ 𝛻𝑁𝑁 𝑥𝑁, 𝑦𝑁 = 𝑞𝑁, 𝑥𝑁 , 𝑦𝑁 ∈ 𝛤𝑁

𝑁𝑁 𝑥𝐷 , 𝑦𝐷 = ℎ𝐷, 𝑥𝐷 , 𝑦𝐷 ∈ 𝛤𝐷

𝑁𝑁 𝑥𝑚, 𝑦𝑚 = ℎ𝑚, 𝑥𝑚 , 𝑦𝑚 ∈ 𝛺

𝛻 ∙ 𝑇 𝑥𝑒 , 𝑦𝑒 𝛻𝑁𝑁 𝑥𝑒 , 𝑦𝑒 = 0, 𝑥𝑒 , 𝑦𝑒 ∈ 𝛺

Determined Data

Randomly Selected

𝑁𝑁 is a pointwise, continuous function 𝐹 𝑥, 𝑦; 𝜽 . To train it, we need collect points with interests from the map.

Not every point is used for PDE constraint!

In each training iteration, we use 300 

points as PDE batch for 𝑥𝑒 , 𝑦𝑒 .

Type of points Number

Pumping 𝑥𝑝, 𝑦𝑝 1

Neumann 𝑥𝑁 , 𝑦𝑁 64 ×2

Dirichlet 𝑥𝐷 , 𝑦𝐷 64 ×2

Monitored 𝑥𝑚 , 𝑦𝑚 24

PDE 𝑥𝑒 , 𝑦𝑒 300



Groundwater PINN
Forward PINN Experiment

Table 1. Geostatistical and hydrogeological parameters for hydraulic 

tomography experiments

Parameter Units Value

Domain size, 𝐿𝑥 × 𝐿𝑦 𝑚 ×𝑚 160 x 160

Grid spacing, 𝛥𝑥 × 𝛥𝑦 𝑚 ×𝑚 2.5 x 2.5

Spatial resolution, 𝑛𝑥 × 𝑛𝑦 64 x 64

Aquifer thickness, 𝑏 𝑚 1

Mean log hydraulic conductivity, 𝐸[𝑙𝑛𝑇] 𝑚/ℎ𝑟 0.0

Correlation length, 𝜆𝑥 × 𝜆𝑦 𝑚 ×𝑚 24 x 20

Variance, 𝜎𝑙𝑛𝐾
2 1.0

Natural gradient, 𝐽 𝑚/𝑚 0.0

Pumping rate, 𝑄𝑝 𝑚3/ℎ𝑟 3.6

Top & Bottom boundary conditions Impermeable (
𝜕ℎ

𝜕𝑦
= 0)

Left & Right boundary conditions Constant (ℎ = 0)

𝑙𝑛𝑇 is fully known as 

model parameters

Relative residual: 𝜖𝑁𝑁 =
𝑁𝑁 𝑥,𝑦 −ℎ 𝑥,𝑦 2

2

ℎ 𝑥,𝑦 2
2 < 5%. 

Figure 1. Comparison of 𝑁𝑁 model with numerical simulation for a pumping test. 

Column A is numerical simulation results, and column B is NN results. (A1) numerical 

simulation of hydraulic head distribution, (A2) the gradient field, (A3) numerical 

evaluated PDE residual; (B1) 𝑁𝑁 of hydraulic head distribution, (B2) approximated 

gradient field, (B3) approximated PDE residual; (C1) reference water heads vs. 

predicted water heads. (D) lnT field.



𝑥𝑖

𝑦𝑖

𝑇𝑖

Inverse Model PINN

𝛻 ∙ [𝑇𝑁𝑁 𝑥𝑒 , 𝑦𝑒 𝛻𝑁𝑁 𝑥𝑒 , 𝑦𝑒 ] = 0, 𝑥𝑒 , 𝑦𝑒 ∈ 𝛺

𝛻 ∙ 𝑇𝑁𝑁 𝑥𝑝, 𝑦𝑝 𝛻𝑁𝑁 𝑥𝑝, 𝑦𝑝 = 𝑄𝑝, (𝑥𝑝, 𝑦𝑝) ∈ 𝛺

𝐧 ∙ 𝛻𝑁𝑁 𝑥𝑁, 𝑦𝑁 = 𝑞𝑁, 𝑥𝑁 , 𝑦𝑁 ∈ 𝛤𝑁

𝑁𝑁 𝑥𝐷 , 𝑦𝐷 = ℎ𝐷, 𝑥𝐷 , 𝑦𝐷 ∈ 𝛤𝐷

Monitored water heads:  𝑁𝑁 𝑥𝑚, 𝑦𝑚 = ℎ𝑚, 𝑥𝑚, 𝑦𝑚 ∈ 𝛺

Measurements of transmissivity:  𝑇𝑁𝑁 𝑥𝑇 , 𝑦𝑇 = 𝑇 𝑥𝑇 , 𝑦𝑇𝑇𝑁𝑁

𝑥𝑖

𝑦𝑖

ℎ𝑖
𝑁𝑁

Groundwater PINN



𝑥𝑖

𝑦𝑖

𝑥𝑖

𝑦𝑖

ℎ𝑖
AD

𝜕ℎ𝑖
𝜕𝑥𝑖

𝜕ℎ𝑖
𝜕𝑦𝑖

AD

AD

𝜕2ℎ𝑖

𝜕𝑥𝑖
2

𝜕2ℎ𝑖

𝜕𝑦𝑖
2

+

∗

𝑇𝑖
𝜕2ℎ𝑖

𝜕𝑥𝑖
2 +

𝜕2ℎ𝑖

𝜕𝑦𝑖
2

+
𝜕ℎ𝑖
𝜕𝑥𝑖

𝜕𝑇𝑖
𝜕𝑥𝑖

+
𝜕ℎ𝑖
𝜕𝑦𝑖

𝜕𝑇𝑖
𝜕𝑦𝑖

𝜕ℎ𝑁𝑒𝑢𝑚

𝑄𝑝

Backpropagation

𝑙𝑜𝑠𝑠𝐷 𝑙𝑜𝑠𝑠𝑁 𝑙𝑜𝑠𝑠𝑒

Total Loss

ℎ𝐷𝑖𝑟𝑖

𝑙𝑜𝑠𝑠𝑚

ℎ𝑚

Groundwater PINN
Inverse PINN Pathway

Collocation data

𝜕𝑇𝑖
𝜕𝑥𝑖

𝜕𝑇𝑖
𝜕𝑦𝑖

+

∗

AD

𝑇𝑖

+

𝑙𝑜𝑠𝑠𝑝
Weighted

Sum
𝑙𝑜𝑠𝑠𝑇

𝑇𝑖

𝑇



Train Inverse PINN

Beside the data for 𝑁𝑁, we also need data (direct measurements of transmissivity) for continuous function 𝑇𝑁𝑁

Type of points Number Type of points Number

Pumping 𝑥𝑝, 𝑦𝑝 1 Direct 𝑥𝑇 , 𝑦𝑇 61

Neumann 𝑥𝑁 , 𝑦𝑁 64 × 2 Monitored 𝑥𝑚 , 𝑦𝑚 24

Dirichlet 𝑥𝐷 , 𝑦𝐷 64 ×2 PDE 𝑥𝑒 , 𝑦𝑒 300

Groundwater PINN

Resolution: 1024 × 1024

Total data: 642 



Hydraulic Tomography

For non-pumping grid:       𝛻 ∙ [𝑇 𝑥𝑒 , 𝑦𝑒 𝛻ℎ 𝑥𝑒 , 𝑦𝑒 ] = 0, 𝑥𝑒 , 𝑦𝑒 ∈ 𝛺

For pumping grid:              𝛻 ∙ 𝑇 𝑥𝑝, 𝑦𝑝 𝛻ℎ 𝑥𝑝, 𝑦𝑝 = 𝑄𝑝, (𝑥𝑝, 𝑦𝑝) ∈ 𝛺

Neumann boundary:          𝐧 ∙ 𝛻ℎ 𝑥𝑁 , 𝑦𝑁 = 𝑞𝑁, 𝑥𝑁, 𝑦𝑁 ∈ 𝛤𝑁

Dirichlet boundary:            ℎ 𝑥𝐷 , 𝑦𝐷 = ℎ𝐷, 𝑥𝐷 , 𝑦𝐷 ∈ 𝛤𝐷

Pumping tests are conducted at different locations  ⇒

Groundwater PINN

P1 P5 P25P21P13



Hydraulic Tomography-PINN

Only one inverse network 𝑇𝑁𝑁

Each pumping test has a forward 

network

Groundwater PINN



Hydraulic Tomography-PINN

Groundwater PINN 𝜀 𝑥, 𝑦 =
𝑇𝑁𝑁 𝑥, 𝑦 − 𝑇 𝑥, 𝑦

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
, 𝑥, 𝑦 ∈ 𝛺

Forward Performance

Relative residual 𝜖𝑁𝑁𝑖 at

P1: 6.00%, 

P5: 9.37%, 

P13: 6.57%, 

P21: 7.13%, 

P25: 8.40%

Inverse Performance

Relative residual 

𝜖𝑇𝑁𝑁=9.09%

Accuracy

𝜀 =96.85%



Scalability of HT-PINN

Model RGA HT-PINN

Accuracy > 90% > 90%

𝑵𝒉 24×5 24×5

𝑵𝒍𝒏𝑻 0 61

Covariance Yes No

Scalability Linear Constant

Groundwater PINN



Model Discussion

Groundwater PINN

HT-PINN GA Inverse model

Type Lagre regression model Optimize Bayesian posteriori

Regularization Physical constraints (PDE) Geostatistical assumption (covariance)

Pros Easy to get convergence

Scalable (pointwise computation)

Not data demanding

Theory-guided (robust and interpretive)

Cons Demands direct measurements

Data fitting and lack interpretation

Need iteration

Matrix-wise computation



Future work
Model Extension

1. Modify current HT-PINN to 3D (𝑥, 𝑦, 𝑧), trainsient model (𝑥, 𝑦, 𝑧, 𝑡).

2. Extend PINN to other type of groundwater inverse problem such as: tracer concentration test

3. Add geostatistical constraints to HT-PINN, hopefully, the data demands can be reduced

4. Upgrade DNN to convolution neural network (CNN), enhance model efficiency and generality 



Many Thanks!

Q & A

Appreciate any questions
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