
1.  Introduction
The main computational costs of gradient-based inverse methods for solving high-dimensional groundwater 
inverse problems usually include (a) the storage and computation of large-dimensional spatial covariance matri-
ces, which regularize the smoothness of the parameter field to be estimated, (b) a large number of iterative forward 
model implementations to determine the Jacobian matrix, and (c) forward model simulations on high-resolution 
parameter fields (Kitanidis, 2015). Many research efforts have been devoted to improving the storage and compu-
tation of large matrices and reducing the number of forward model runs. For example, adjoint state methods 
were developed to evaluate the Jacobian by solving an additional forward model system for each measurement 
(Sun & Yeh, 1990a, 1990b, 1992), reducing the number of forward model runs to the number of measurements. 
Geostatistical approach (GA) has been improved to compute large-dimensional covariance matrices and reduce 
the number of forward model runs (Ambikasaran et al., 2013; Kitanidis & Lee, 2014; Lee & Kitanidis, 2014; Lin 
et al., 2017; Liu & Kitanidis, 2011; Nowak & Cirpka, 2004; Nowak et al., 2003; Zha et al., 2018). Kitanidis and 
Lee (2014) introduced a low-rank approximation of the covariance matrix through principal component analysis 
for dimensionality reduction, which reduced the number of forward model runs to the retained rank of principal 
components. Zhao and Luo (2020) reformulated the Bayesian geostatistical inverse approach based on the dimen-
sionality reduction of dominant principal axes, where the inverse problem is transformed from directly estimating 
the underlying parameter field (Kitanidis & Lee, 2014; Zha et al., 2018) to estimating coefficients or projections 
on principal axes. This approach is further extended to use an approximate Jacobian via a quasi-Newton method 
(Zhao & Luo, 2021b) and to account for biased prior structural parameters of spatial covariance by iteratively 
corrected principal axes (Zhao & Luo, 2021a). In addition, dimensionality reduction can also be achieved by 
the active subspace method (Yan et al., 2021) and training neural networks on spatial field training images with 
multipoint geostatistical distribution patterns (Laloy et al., 2018).

All the efforts mentioned above rely on forward model simulations on high-resolution parameter fields. That is, 
even if the number of forward model runs is reduced (Lee & Kitanidis, 2014; Zhao and Luo, 2020, 2021b), high 
computing power such as parallelization is still needed to solve the inverse problem in a reasonable time frame, 
especially for transient forward model simulations such as transient pumping tests (Tiedeman & Barrash, 2020). 
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So far, we have seen two methods developed to accelerate forward model computation in groundwater inverse 
problems: the method of temporal moments and surrogate models. The former method reduced the computa-
tional cost by transforming transient groundwater flow models to steady-state moment generating equations (Li 
et al., 2005; Nowak & Cirpka, 2006; Pollock & Cirpka, 2008; Yin & Illman, 2009; Zhu & Yeh, 2006). However, 
the computation of temporal moments, especially high-order moments, requires long sampling times and smooth 
measurements, which may be challenging in the field, especially for monitoring wells with heavy tail measure-
ments located in low-permeability regions (Tiedeman & Barrash, 2020; Yin & Illman, 2009). The latter method 
usually seeks approximate solutions by constructing a solution subspace for reduced order models, which still 
requires extensive forward model computations for each flow scenario, such as pumping at different wells in 
high-resolution fields given a smoothness regularization (Boyce & Yeh, 2014; Liu et al., 2013). For example, 
Liu et al. (2013) proposed to develop a solution subspace for reduced order models based on the cross covariance 
between the data and estimated parameters, where the number of high-resolution forward model runs depends 
on the number of measurements and may not be constant for biased prior covariance. Recently, machine learning 
models were used to develop surrogate models (Xiao et al., 2022). However, training data were also generated 
by running high-resolution models for given geostatistical moments, including both mean and covariance, which 
are often uncertain in the field.

In this note, we aim to explore the feasibility of implementing numerical computations of forward models on 
upscaled coarse grids for inverse estimation of high-dimensional groundwater flow inverse problems. Multigrid 
methods have been proposed to accelerate inverse modeling, such as stochastic sampling methods, by combining 
low-fidelity model for screening possible solutions and high-fidelity model for high accuracy and convergence 
(Peherstorfer et al., 2018), and the multiscale adjoint method for evaluating fine-scale sensitivity coefficients (Fu 
et al., 2011). Our approach is named the Upscaled Principal Component Inverse Approach (UPCIA), which is 
based on the reformulated framework to estimate principal component coefficients on reduced dimensions (Zhao 
& Luo, 2020). The goal is to estimate the retained principal component coefficients using upscaled effective 
models on coarse-resolution parameter fields and then generate the high-resolution parameter field based on the 
original principal components, thus integrating downscaling and inverse modeling. This idea is motivated by the 
observations that numerical simulations of hydraulic heads in a pumping test are insensitive to grid resolution 
(Kitanidis, 2015), particularly for large-time drawdowns that respond to the effective aggregate transmissivity 
(Sánchez-Vila et al., 1999, 2006).

2.  Brief Overview of Reformulated Geostatistical Approach
To be complete, the following presents a brief review of the reformulated geostatistical approach (RGA) for 
estimating the projections or coefficients on dominant principal axes for large-scale spatial fields (Zhao & 
Luo, 2020). The general observation equation describing the relationship between data or dependent variables 
and target parameters is given by

𝐲𝐲 = 𝐡𝐡(𝐬𝐬) + 𝜖𝜖� (1)

where 𝐴𝐴 𝐲𝐲 ∈ ℝ
n×1 represents an observation data vector, 𝐴𝐴 𝐬𝐬 ∈ ℝ

m×1 is an unknown variable vector, 𝐴𝐴 𝐡𝐡 represents the 
forward model, and 𝐴𝐴 𝐴𝐴 ∈ ℝ

n×1 represents a Gaussian noise vector with a covariance 𝐴𝐴 𝐑𝐑 (often proportional to the 
identity matrix). For spatial random processes, the unknown variable 𝐴𝐴 𝐬𝐬 is typically conceptualized and modeled 
by a deterministic mean with unknown drift coefficients and a stochastic process

𝐬𝐬 = 𝐗𝐗𝛽𝛽 + 𝜁𝜁� (2)

where 𝐴𝐴 𝐗𝐗 ∈ ℝ
𝑚𝑚×𝑝𝑝 represents the drift of mean, 𝐴𝐴 𝐴𝐴 ∈ ℝ

𝑝𝑝×1 represents the unknown coefficient vector of the drift 
function, 𝐴𝐴 𝐴𝐴 is the number of mean drifts, and 𝐴𝐴 𝐴𝐴 ∈ ℝ

m×1 is typically regularized by the first two moments: zero 
mean and covariance 𝐴𝐴 𝐐𝐐 ∈ ℝ

𝑚𝑚×𝑚𝑚 , which is often modeled by a two-point geostatistical covariance function.

The stochastic part in 𝐴𝐴 𝐬𝐬 can be approximated by a linear combination of scaled principal components

𝐬𝐬 = 𝐗𝐗𝛽𝛽 + 𝐙𝐙𝛼𝛼� (3)
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where 𝐴𝐴 𝐙𝐙 ∈ ℝ
𝑚𝑚×𝑘𝑘 is the matrix with 𝐴𝐴 𝐴𝐴 scaled, most dominant eigenvectors or principal components from the covar-

iance matrix of the random process, 𝐴𝐴 𝐐𝐐𝐬𝐬𝐬𝐬 ∈ ℝ
𝑚𝑚×𝑚𝑚 , satisfying 𝐴𝐴 𝐐𝐐𝐬𝐬𝐬𝐬 ≈ 𝐙𝐙𝐙𝐙T . The latent variable 𝐴𝐴 𝐴𝐴 ∈ ℝ

𝑘𝑘×1 ∼ N(0, 𝐈𝐈) 
is the coefficient vector representing the projections of the stochastic fluctuations on the retained principal axes. 
The original inverse problem is thus converted to be a lower-dimensional problem of inverting 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 .

The observation function can then be rewritten as follows:

𝐲𝐲 = 𝐡𝐡(𝛼𝛼𝛼 𝛼𝛼) + 𝜖𝜖� (4)

Following the classic Bayesian geostatistical approach (Kitanidis, 1995), the posterior distribution of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 is 
given by the equation (Zhao & Luo, 2021a):

𝑝𝑝
′′
(𝛼𝛼𝛼 𝛼𝛼) ∝ exp

(

−
1

2
(𝐲𝐲 − 𝐡𝐡(𝛼𝛼𝛼 𝛼𝛼))

T
𝐑𝐑−1

(𝐲𝐲 − 𝐡𝐡(𝛼𝛼𝛼 𝛼𝛼)) −
1

2
𝛼𝛼
T
𝛼𝛼

)

� (5)

The reformulated approach is to solve the following optimization problem:

min
𝛼𝛼𝛼𝛼𝛼

𝑓𝑓 (𝛼𝛼𝛼 𝛼𝛼) =
1

2
(𝐲𝐲 − 𝐡𝐡(𝛼𝛼𝛼 𝛼𝛼))

T
𝐑𝐑−1

(𝐲𝐲 − 𝐡𝐡(𝛼𝛼𝛼 𝛼𝛼)) +
1

2
𝛼𝛼
T
𝛼𝛼� (6)

To obtain the best estimates of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , Equation 6 is iteratively linearized and minimized by solving the follow-
ing linear equation system:

⎡

⎢

⎢

⎣

𝐇𝐇T
𝛼𝛼
𝐑𝐑−1𝐇𝐇𝛼𝛼 + 𝐈𝐈 𝐈𝐈T

𝛼𝛼
𝐑𝐑−1𝐇𝐇𝛽𝛽

𝐇𝐇T

𝛽𝛽
𝐑𝐑−1𝐇𝐇𝛼𝛼 𝐇𝐇T

𝛽𝛽
𝐑𝐑−1𝐇𝐇𝛽𝛽

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛼̂𝛼

𝛽𝛽

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

𝐇𝐇T
𝛼𝛼
𝐑𝐑−1

(𝐲𝐲 − 𝐡𝐡(𝛼𝛼𝛼 𝛼𝛼) +𝐇𝐇𝛼𝛼𝛼𝛼 +𝐇𝐇𝛽𝛽𝛽𝛽)

𝐇𝐇T

𝛽𝛽
𝐑𝐑−1

(𝐲𝐲 − 𝐡𝐡(𝛼𝛼𝛼 𝛼𝛼) +𝐇𝐇𝛼𝛼𝛼𝛼 +𝐇𝐇𝛽𝛽𝛽𝛽)

⎤

⎥

⎥

⎦

� (7)

where 𝐴𝐴 𝐇𝐇𝛼𝛼 ∈ ℝ
𝑛𝑛×𝑘𝑘 represents the Jacobian matrix of the forward model with respect to 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐇𝐇𝛽𝛽 ∈ ℝ

𝑛𝑛×𝑝𝑝 represents 
the Jacobian matrix of the forward model with respect to 𝐴𝐴 𝐴𝐴 . An intuitive way of computing the Jacobian matrices 
is to compute the differences of forward outputs by sequentially perturbing each element in 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 .

When the optimization converges, the posterior covariance matrix of 𝐴𝐴 𝐴𝐴𝐴 is

̂𝐐𝐐𝛼𝛼𝛼𝛼 =

(

𝐇𝐇
T

𝛼𝛼𝐑𝐑
−1𝐇𝐇𝛼𝛼 + 𝐈𝐈 −𝐇𝐇

T

𝛼𝛼𝐑𝐑
−1𝐇𝐇𝛽𝛽

(

𝐇𝐇
T

𝛽𝛽𝐑𝐑
−1𝐇𝐇𝛽𝛽

)−1

𝐇𝐇
T

𝛽𝛽𝐑𝐑
−1𝐇𝐇𝛼𝛼

)−1

� (8)

The posterior of the parameter field can be approximated as follows:

̂𝐐𝐐𝐬𝐬𝐬𝐬 = 𝐙𝐙 ̂𝐐𝐐𝛼𝛼𝛼𝛼𝐙𝐙
T� (9)

For unknown or biased prior information, the posterior covariance matrix can be used to iteratively correct the 
prior covariance matrix until the estimation converges (Zhao & Luo, 2021a).

3.  Upscaled Principal Component Inverse Approach (UPCIA)
RGA admits an efficient and scalable way of solving a Bayesian inverse problem. However, the iterative process 
consists of repeated formulation of Equation 7, requiring forward model simulations on the high-resolution param-
eter field. To alleviate the computational burden of running forward models, we propose the UPCIA approach 
that exploits the connection between high-resolution fields and upscaled coarse-resolution fields. The proposed 
approach can be regarded as a natural extension of the reformulated geostatistical approach, as the connec-
tion between fields of different resolutions can be conveniently established by principal component coefficients. 
Hereafter, we will denote the low-resolution field as 𝐴𝐴 𝐬𝐬𝑙𝑙 and distinguish associated variables with subscript “𝐴𝐴 𝐴𝐴 .” 
By applying an upscaling matrix 𝐴𝐴 𝐔𝐔 to the original field in Equation 3, the low-resolution field can be expressed 
as follows:

𝐬𝐬𝑙𝑙 = 𝐔𝐔𝐔𝐔 = 𝐔𝐔𝐔𝐔𝛽𝛽 + 𝐔𝐔𝐔𝐔𝛼𝛼 = 𝐗𝐗𝑙𝑙𝛽𝛽 + 𝐙𝐙𝑙𝑙𝛼𝛼� (10)

where 𝐴𝐴 𝐬𝐬𝑙𝑙 ∈ ℝ
𝑚𝑚
𝑙𝑙
×1 and 𝐴𝐴 𝐴𝐴𝑙𝑙 is a much smaller number than 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐔𝐔 is the upscaling matrix, 𝐴𝐴 𝐗𝐗𝑙𝑙 = 𝐔𝐔𝐔𝐔 is the upscaled 

drift, and 𝐴𝐴 𝐙𝐙𝑙𝑙 = 𝐔𝐔𝐔𝐔 is the upscaled principal axes. The most common upscaling method is spatial averaging, 
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which yields the geometric mean of a hydraulic conductivity or transmissivity field. Sanchez-Vila et al. (2006) 
conducted an extensive review of representative hydraulic conductivities of Gaussian heterogeneous conductivity 
fields regularized by two-point stationary, isotropic spatial covariance and suggested that traditional hydraulic 
test interpretations yield conductivities that are closely related to equivalent and/or effective hydraulic conductiv-
ities. The upscaled field is a local geometric mean distribution, which still describes large-scale spatial distribu-
tion patterns at the coarse resolution.

The moments of the upscaled field can be evaluated

𝐸𝐸 [𝐬𝐬𝑙𝑙] = 𝐗𝐗𝑙𝑙𝛽𝛽� (11)

𝐸𝐸

[

(𝐬𝐬𝑙𝑙 − 𝐗𝐗𝑙𝑙𝛽𝛽) (𝐬𝐬𝑙𝑙 − 𝐗𝐗𝑙𝑙𝛽𝛽)
T
]

= 𝐙𝐙𝑙𝑙𝐙𝐙
T

𝑙𝑙
= 𝐔𝐔𝐔𝐔𝐔𝐔T� (12)

We shall notice that the upscaled principal axes, 𝐴𝐴 𝐙𝐙𝑙𝑙 , are not the actual principal axes for the random process on 
the coarse-resolution grid. First, the upscaled vectors are not necessarily orthogonal to each other and second, 
the covariance of the upscaled parameter field is not following the covariance model defined for the prior covar-
iance 𝐴𝐴 𝐐𝐐 on the high-resolution field. However, the upscaling matrix applies no transformation to the unknown 
variables; hence, the best estimate of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 can be obtained by using 𝐴𝐴 𝐬𝐬𝑙𝑙 in the forward model simulation. The 
observation equation needs to be slightly modified to include additional errors introduced by the low-resolution 
forward model.

𝐲𝐲 = 𝐡𝐡𝑙𝑙(𝛼𝛼𝛼 𝛼𝛼) + 𝜀𝜀𝒍𝒍� (13)

where 𝐴𝐴 𝐡𝐡𝑙𝑙 represents the upscaled, low-resolution forward model and 𝐴𝐴 𝐴𝐴𝒍𝒍 ∈ ℝ
n×1 represents a noise vector with 

the covariance 𝐴𝐴 𝐓𝐓 . In theory, 𝐴𝐴 𝐴𝐴𝒍𝒍 should include the error in Equation 4 and the numerical differences between the 
high-resolution model, 𝐴𝐴 𝐡𝐡(𝛼𝛼𝛼 𝛼𝛼) , and low-resolution model, 𝐴𝐴 𝐡𝐡𝑙𝑙(𝛼𝛼𝛼 𝛼𝛼) . However, it is challenging to distinguish them. 
For simplicity, this error covariance matrix 𝐴𝐴 𝐓𝐓 is modeled similarly to 𝐴𝐴 𝐑𝐑 as a matrix proportional to the identity 
matrix as well. Though the Gaussian error assumption does not fully align with the real error distribution, its 
applicability will be validated in our numerical experiments. Following the same manner, the posterior distribu-
tion of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 is derived as

𝑝𝑝
′′
(𝛼𝛼𝛼 𝛼𝛼) ∝ exp

(

−
1

2
(𝐲𝐲 − 𝐡𝐡𝑙𝑙(𝛼𝛼𝛼 𝛼𝛼))

T
𝐓𝐓−1

(𝐲𝐲 − 𝐡𝐡𝑙𝑙(𝛼𝛼𝛼 𝛼𝛼)) −
1

2
𝛼𝛼
T
𝛼𝛼

)

� (14)

The objective function to be minimized is

min
𝛼𝛼𝛼𝛼𝛼

𝑓𝑓 (𝛼𝛼𝛼 𝛼𝛼) =
1

2
(𝐲𝐲 − 𝐡𝐡𝑙𝑙(𝛼𝛼𝛼 𝛼𝛼))

T
𝐓𝐓−1

(𝐲𝐲 − 𝐡𝐡𝑙𝑙(𝛼𝛼𝛼 𝛼𝛼)) +
1

2
𝛼𝛼
T
𝛼𝛼� (15)

Accordingly, Equation 7 becomes

⎡

⎢

⎢

⎣

𝐇𝐇T

𝛼𝛼𝛼𝛼
𝐓𝐓−1𝐇𝐇𝛼𝛼𝛼𝛼 + 𝐈𝐈 𝐈𝐈T

𝛼𝛼𝛼𝛼
𝐓𝐓−1𝐇𝐇𝛽𝛽𝛽𝛽

𝐇𝐇T

𝛽𝛽𝛽𝛽
𝐓𝐓−1𝐇𝐇𝛼𝛼𝛼𝛼 𝐇𝐇T

𝛽𝛽𝛽𝛽
𝐓𝐓−1𝐇𝐇𝛽𝛽𝛽𝛽

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛼̂𝛼

𝛽𝛽

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

𝐇𝐇T

𝛼𝛼𝛼𝛼
𝐓𝐓−1

(𝐲𝐲 − 𝐡𝐡𝑙𝑙(𝛼𝛼𝛼 𝛼𝛼) +𝐇𝐇𝛼𝛼𝛼𝛼𝛼𝛼 +𝐇𝐇𝛽𝛽𝛽𝛽𝛽𝛽)

𝐇𝐇T

𝛽𝛽𝛽𝛽
𝐓𝐓−1

(𝐲𝐲 − 𝐡𝐡𝑙𝑙(𝛼𝛼𝛼 𝛼𝛼) +𝐇𝐇𝛼𝛼𝛼𝛼𝛼𝛼 +𝐇𝐇𝛽𝛽𝛽𝛽𝛽𝛽)

⎤

⎥

⎥

⎦

� (16)

where 𝐴𝐴 𝐇𝐇𝛼𝛼
𝑙𝑙
 and 𝐴𝐴 𝐇𝐇𝛽𝛽

𝑙𝑙
 represent the Jacobian matrices of 𝐴𝐴 𝐡𝐡𝑙𝑙 with respect to 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 , respectively.

When the optimization converges, the best estimates of 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝛽𝛽  can then be substituted into Equation 3 to obtain 
the best estimates of the high-resolution field. Also, the posterior covariance matrix of 𝐴𝐴 𝐴𝐴𝐴 can be evaluated through 
the upscaled model by

̂𝐐𝐐𝛼𝛼𝛼𝛼 =

(

𝐇𝐇T

𝛼𝛼𝛼𝛼
𝐓𝐓−1𝐇𝐇𝛼𝛼𝛼𝛼 + 𝐈𝐈 −𝐇𝐇T

𝛼𝛼𝛼𝛼
𝐓𝐓−1𝐇𝐇𝛽𝛽𝛽𝛽

(

𝐇𝐇T

𝛽𝛽𝛽𝛽
𝐓𝐓−1𝐇𝐇𝛽𝛽𝛽𝛽

)−1

𝐇𝐇T

𝛽𝛽𝛽𝛽
𝐓𝐓−1𝐇𝐇𝛼𝛼𝛼𝛼

)−1

� (17)

Equation 9 can then be used to evaluate the variance associated with the best estimates of the high-resolution 
field.

During the inversion process, the high-resolution field is mainly used to generate its dominant principal axes, 
𝐴𝐴 𝐙𝐙 , given the prior information of spatial covariance. This step can be conveniently implemented by generating 
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random realizations and singular value decomposition (Kitanidis & Lee, 2014). After the upscaled principal axes, 
𝐴𝐴 𝐙𝐙𝑙𝑙 , are obtained, the high-resolution field 𝐴𝐴 𝐬𝐬 is not necessarily updated during iterations because the updates of the 

coarse resolution 𝐴𝐴 𝐬𝐬𝑙𝑙 can be conveniently computed by Equation 10. Once the optimization routine converges, the 
high-resolution field 𝐴𝐴 𝐬𝐬 can be evaluated by Equation 3.

The algorithm of UPCIA is summarized as follows:

1.	 �Evaluate the principal axes, 𝐴𝐴 𝐙𝐙 , for a given spatial covariance
2.	 �Evaluate the upscaled principal axes, 𝐴𝐴 𝐙𝐙𝑙𝑙 , for an upscaling matrix, 𝐴𝐴 𝐔𝐔

3.	 �Estimate 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 based on 𝐴𝐴 𝐙𝐙𝑙𝑙 in the framework of RGA (Zhao & Luo, 2020)
4.	 �Evaluate the high-resolution field 𝐴𝐴 𝐬𝐬 and associated uncertainties

UPCIA is developed for given structural parameters for the spatial covariance. Since UPCIA is based on the RGA 
framework, it is convenient to use the posterior covariance to iteratively correct biased prior structural parameters 
for unknown spatial covariance (Zhao & Luo, 2021a). The variance of the error term in the matrix 𝐴𝐴 𝐓𝐓 , similar to 
the covariance matrix of the high-resolution field, 𝐴𝐴 𝐑𝐑 , is unknown a prior. In the numerical implementation, this 
term can be updated using the mean-squared error between modeling results and measurements for each iteration, 
which corresponds to a maximum likelihood estimator that can also be achieved by an expectation maximization 
algorithm (Fienen et al., 2006). However, the error variance decays rapidly with the iterations, that is, data fitting 
can be rapidly improved. Thus, a minimum threshold should be defined to prevent data fitting from dominating 
the optimization of the objective function, which may lead to the problem of overfitting (Zhao & Luo, 2021a).

4.  Numerical Experiments
To test the effectiveness and computational costs of UPCIA, we design various numerical experiments of 
large-scale hydraulic tomography problems to estimate spatially distributed transmissivity or hydraulic conduc-
tivity fields, including 2-D steady-state hydraulic tomography in Gaussian and non-Gaussian fields and highly 
heterogeneous fields with Gaussian and exponential covariance models, 2-D transient and 3-D steady-state 
hydraulic tomography.

4.1.  2-D Steady-State Hydraulic Tomography

4.1.1.  Numerical Experiments and Random Fields

We consider steady-state sequential pumping test in a monitoring well network. The first case is a multi-Gaussian 
random field with a Gaussian covariance model and the second case is a structured, multimodal, non-Gaussian 
heterogeneous field. Both transmissivity fields have a fine resolution of 𝐴𝐴 512 × 512 , which yields 262,144 
unknowns to be estimated in the inverse problem. The UPCIA is applied to different upscaling resolutions, 
including the original 𝐴𝐴 512 × 512 , 𝐴𝐴 128 × 128 , 𝐴𝐴 64 × 64 , 𝐴𝐴 32 × 32 , and 𝐴𝐴 16 × 16 . We should notice that UPCIA 
becomes RGA when the original fine resolution is applied. All numerical experiments are implemented on a 
desktop computer equipped with Intel® Xeon® W2102 CPU @ 2.90 GHz processor and 8.00 GB RAM.

Figure 1 shows the multi-Gaussian random with a Gaussian covariance model and the non-Gaussian structured 
field, similar to the porous media packed in a sand box (Liu & Kitanidis, 2011), where several low-permeability 
inclusions are embedded in a homogeneous medium. The well networks are represented by dots with different 
colors. Wells used as pumping or monitoring wells alternatively in hydraulic tomography are represented by 
black dots, while wells only used for pumping are represented by white dots. Hydraulic tomography is imple-
mented by sequentially applying a constant pumping rate at a pumping well and recording steady-state hydraulic 
heads or drawdowns at all the monitoring wells. For the Gaussian field with 25 wells, we have a total of 600 
measurements (25 pumping tests × 24 monitoring wells) and for the non-Gaussian field with 35 wells, we have an 
additional 250 measurements (10 additional pumping tests × 25 monitoring wells). To imitate the actual situation 
of observational data collected from hydraulic tomography, we also contaminate the synthetic observational data 
with 𝐴𝐴 5% normal random errors.

Table 1 summarizes the geostatistical and hydraulic parameters of both numerical experiments. It is particularly 
worth mentioning that because the structured field is not generated by any geostatistical covariance function, 
the specified geostatistical parameters for regularizing the inversion will be highly biased. Yeh and Liu (2000) 
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and Liu et al. (2007) discussed that the choice of 𝐴𝐴 𝐴𝐴
2 and 𝐴𝐴 𝐴𝐴 does not make significant differences on the inversion 

results, particularly in the case when observational data are abundant. Zhao and Luo (2021a) investigated the 
correction of biased prior structure information. For simplicity, the geostatistical parameters for the logarithmic 
transmissivity field are assigned as 𝐴𝐴 𝐴𝐴

2 = 2.5 , 𝐴𝐴 𝐴𝐴𝐴𝐴 = 40m , 𝐴𝐴 𝐴𝐴𝐴𝐴 = 20m , and 𝐴𝐴 𝐴𝐴 = −1.76 . In both cases, the number 
of retained principal components are 50, which accounts for more than 𝐴𝐴 95% of the total variance contained in the 
defined covariance matrix. We keep these parameters constant for all UPCIA simulations.

4.1.2.  Results and Discussion

Figure 2 shows the inversion results. The top panel is for the Gaussian random field, while the bottom panel is 
for structured field. In each panel, the first row shows the best estimates of the logarithmic transmissivity, the 
second row shows the variance map, and the third row shows the reproduction of measurement. Figure 2 clearly 
demonstrates that the inversion results from different resolutions are almost the same. The comparison essentially 
confirms that the UPCIA approach on upscaled coarse grids can capture the main distribution features of the 
heterogeneous field, both Gaussian and non-Gaussian structured fields, and reproduce the measurements. The 
variance maps from both cases do not show significant difference among different upscaled resolutions. The 
lower uncertainty area in the center of the variance map coincides with the location of the well network, indicat-
ing that the best estimate is more certain where the data are collected.

Table 2 quantifies the computational performance of the UPCIA on different resolutions, including the number 
of forward model runs, total computational time, and the map accuracy compared with the true field. For the 
Gaussian field, we generate multiple fields with the same geostatistical parameters and provide the mean and 

Figure 1.  Heterogeneous transmissivity fields (log10 T) for generating hydraulic tomography data. The left figure is a 
Gaussian random field with a Gaussian covariance model and the right figure is a non-Gaussian, multimodal, and structured 
field with low permeability inclusions.

Geostatistical properties

  Domain Scale 𝐴𝐴 100m × 100m  𝐴𝐴 100m × 100m 

  Resolution 𝐴𝐴 512 × 512  𝐴𝐴 512 × 512 

  Covariance Model Gaussian model Structured 
field 

without any 
covariance 
function.

  Geometric Mean Transmissivity 𝐴𝐴 𝐴𝐴 = 10
−5
m2∕s 

  Variance of 𝐴𝐴 ln𝑇𝑇 𝐴𝐴 𝐴𝐴
2 = 0.5 

  Correlation length 𝐴𝐴 𝐴𝐴𝑥𝑥 = 𝑙𝑙𝑦𝑦 = 20m 

Hydraulic and boundary conditions

  Pumping Rate 𝐴𝐴 𝐴𝐴 = 0.075m3∕s  𝐴𝐴 𝐴𝐴 = 3.17m3∕d 

  Top Impermeable Impermeable

  Bottom Impermeable Impermeable

  Left Drawdown 𝐴𝐴 𝐴𝐴 = 0m 𝐴𝐴 𝐴𝐴 = 0m 

  Right 𝐴𝐴 𝐴𝐴 = 0m  𝐴𝐴 𝐴𝐴 = 0m 

Table 1 
Geostatistical and Hydrological Parameters for the Synthetic Inverse Problem Cases
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Figure 2.  Inverse modeling results using upscaled principal component inverse approach with forward model simulations on different resolutions. The top panel is the 
Gaussian random field and the bottom panel is the structured field. Each panel contains the best estimates (the first row), the variance map for uncertainty quantification 
(the second row), and the reproduction of hydraulic head measurements (the third row).
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confidence interval of the computational performance to demonstrate that 
the performance improvement by UPCIA is not case specific. The structured 
field is only inverted once for performance comparison due to its nonrandom-
ness. The number of forward model runs for the Gaussian field is the same 
for different forward model resolutions, and also quite constant for the struc-
tured field, ranging from 318 to 371, indicating that the number of forward 
model runs required for convergence does not change or slightly increases 
with the increase of resolution. Since a more efficient single forward model 
simulation is performed on a coarser resolution, the total computational time 
is significantly reduced and the difference from 𝐴𝐴 16 × 16 to 𝐴𝐴 512 × 512 is more 
than three orders of magnitude, which is consistent with the computation 
reduction for linear equation systems. More importantly, there is no substan-
tial deviation in map accuracy at different forward model resolutions, defined 
by the percentage of grids where the difference between the true and esti-
mated values is less than 10% of the value range (Kang et al., 2017), indi-
cating that the quality of the inversion results using the developed UPCIA is 
effectively preserved but the computational time is greatly reduced. We also 

try coarser resolutions, such as 𝐴𝐴 8 × 8 , but the accuracy is not satisfactory as  the forward model becomes inaccu-
rate. To choose an appropriate coarse resolution, one can simply implement UPCIA at different coarse resolutions 
and compare their performance due to the low computational cost.

The spatial average of the logarithmic hydraulic conductivity values corresponds to the geometric mean of the 
actual transmissivity values, which is demonstrated to be sufficiently effective for the steady-state hydraulic 
tomographic problems even under the assumption of Gaussian errors. To quantify the impact of Gaussian error on 
the computation, we evaluate the difference between the Hessian matrices of the optimization objective function 
for the upscaled coarse-resolution and original-resolution models during the iteration,

Deviation of Hessian matrix =
|

(

�T
��−1�� + �

)

−
(

�T
���−1��� + �

)

|�

|�T
��−1�� + �|�

× 100%� (18)

where 𝐴𝐴 ||𝐹𝐹 represents the Frobenius norm. The deviation evaluation method is similar to the comparison of 
data-covariance variation (Liu et al., 2013). The difference is that our equation system is solved on the retained 
principal component coefficients, whereas Liu et al. (2013) solved the equation system on the data-covariance 
space. Figure 3 shows that during the iteration, the deviations between different upscaled resolutions and the 
original resolution are always kept at low level, thereby having less effect on the equation solution. One of the 
important reasons is that the forward model output maintains high accuracy across different resolutions under 
such an upscaling scheme. For forward models with output sensitive to the resolution, special treatment such as 
non-Gaussian likelihood may be needed (Köpke et al., 2019).

4.1.3.  Highly Heterogeneous Fields

A similar steady-state pumping test setup is applied to two highly heterogeneous fields with a variance of six in 
the log transmissivity, lnT. Figure 4 shows the true fields (A1 and B1) and inverse estimation results (A2 and B2). 
The original resolution is 1,024 × 1,024 with an element size 0.2 × 0.2 m. One field has a Gaussian covariance 
model and the other has an exponential model. We test UPCIA using the upscaled model with a resolution of 
32 × 32, which solves this high-dimensional inverse problem in minutes. For both cases, the inverse results show 
high map accuracy, greater than 90%, compared with the true fields (A4 and B4). The Gaussian covariance field 
is slightly better because its smoothness pattern can be easily maintained at coarse resolution. Data fitting of the 
steady-state hydraulic head measurements is good for both cases (A5 and B5) and the estimate variances are small 
(A3 and B3). In particular, the principal component coefficients estimated from the coarse resolutions match the 
true principal component coefficients at the fine resolution (A6 and B6), particularly for the most dominant prin-
cipal components, further validating the above results (Figure 3) that the Gaussian error employed in the compu-
tation has little effect on evaluating the Hessian matrix for solving the retained principal component coefficients.

Gaussian/
structured

Number of forward 
model runs

Total computational 
time (s) Map accuracy

𝐴𝐴 512 × 512  339 ± 26/371 6891 ± 513/10741 0.96 ± 0.03/0.65

𝐴𝐴 128 × 128  339 ± 26/371 307 ± 22/481 0.96 ± 0.03/0.65

𝐴𝐴 64 × 64  339 ± 26/371 61 ± 5/93 0.96 ± 0.03/0.65

𝐴𝐴 32 × 32  339 ± 26/371 10 ± 0.8/15 0.96 ± 0.03/0.65

𝐴𝐴 16 × 16  339 ± 26/318 2.6 ± 0.2/3.2 0.96 ± 0.03/0.63

Note. Multiple Gaussian fields are generated and estimated. The performance 
results include the mean and confidence interval.

Table 2 
Computational Performance of Upscaled Principal Component Inverse 
Approach With Different Upscaled Resolutions for Gaussian and Structured 
Medium
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Figure 3.  Deviations of Hessian matrices in terms of Frobenius norm for different upscaled resolutions of the Gaussian 
field  case.

Figure 4.  Inverse estimation of transmissivity fields at 1,024 × 1,024 resolution from upscaled 32 × 32 coarse resolution models. (a) Gaussian covariance field and (b) 
exponential covariance field. The black circles in (A1) and (B1) represent the well network. (A2) and (B2) show the best estimates by upscaled principal component 
inverse approach (UPCIA). (A3) and (B3) show the variance of the best estimates. (A4) and (B4) compare the estimates and the true values. (A5) and (B5) show the 
measurement fitting. (A6) and (B6) compare the estimated principal component coefficients by UPCIA with the true values.
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4.2.  2-D Transient Hydraulic Tomography

Figure 5 shows the inverse results of transient pumping tests in two Gaussian random fields of log transmissiv-
ity, one with a Gaussian covariance model (A1) and the other with an exponential model (B1). Both fields are 
moderately heterogeneous with a variance of 1. The original resolution is 1,024 × 1,024 with an element size 
0.1 × 0.1 m. The storage coefficient for both cases is assumed to be 10 −4 by neglecting the impact of storage 
heterogeneity (Zhao & Illman, 2021), only the log transmissivity field is inversely estimated. Sequential pumping 
tests are performed in the well network and 1 hour of time-dependent drawdown data are recorded in one-minute 
time steps (A3 and B3). Thus, for the well network consisting of 25 wells, the total number of drawdown meas-
urements is 36,000 (25 pumping tests × 24 monitoring wells × 60 measurements). UPCIA uses an upscaled 
resolution of 32 × 32 and exhibits very good inverse estimates of the log transmissivity fields (A2 and B2). The 
time-dependent drawdown profiles are also well fitted by the coarse resolution model (A3 and B3). Furthermore, 
the histograms of the residuals between the measured drawdown and coarse resolution model solutions show 
Gaussian-type distributions, also confirming that the use of Gaussian error in the upscaled observation function 
for UPCIA is appropriate.

4.3.  3-D Steady-State Hydraulic Tomography

Figure  6 shows the application of UPCIA for estimating a 3-D hydraulic conductivity field based on 3-D 
steady-state hydraulic tomography. The field resolution is 256 × 256 × 16 with a total of 1.05 million elements 
and each element size is 1 × 1 × 1 m (Figure 6a). The variance of the Gaussian covariance model is 1 and the 
correlation length is 40 m horizontally and 6 m vertically. The well network consists of 16 wells, which are 
uniformly distributed in the domain. The aquifer is confined and all wells are fully penetrated. For each pump-
ing test, multilevel sampling measurements of hydraulic heads are recorded in monitoring wells in each layer 
(Figure 6b). Thus, the total number of measurements is 3,840 (16 pumping tests × 15 monitoring wells × 16 
layers) for inverse modeling. Principal component analysis is performed on the fine-resolution field, and 50 
principal components are retained. The upscale principal components have a resolution of 32 × 32 × 16. The 
estimated log-conductivity field shows good map accuracy compared with the true field (Figure 6c), and the 
model-predicted hydraulic heads match the measured values (Figure 6d), demonstrating that UPCIA is also appli-
cable to the proposed 3-D case. It is particularly worth mentioning that both the 3-D case and the transient 2-D 
case are high dimensional and usually require high computing power and long computing time but both can be 
solved in a few minutes with a PC using UPCIA. In addition, we shall note that for 3-D cases the geometric mean 

Figure 5.  Inverse estimation of 2-D transient hydraulic tomography. (a) Gaussian covariance model and (b) exponential covariance model. Black circles in (A1) 
and (B1) represent the well network. (A2) and (B2) are the inverse estimates from upscaled 32 × 32 coarse resolution models. Black dots in (A3) and (B3) are data 
measurements and gray lines are model fitting for one pumping test. (A4) and (B4) show the distribution of differences between measurements and coarse-resolution 
model simulations.
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is usually not the effective hydraulic conductivity for uniform flow in a stationary isotropic conductivity field 
(Gelhar & Axness, 1983; Gutjahr et al., 1978; Sanchez-Vila et al., 2006). The effective value typically involves 
additional terms as a function of the variance of log conductivity, which yields an additional constant for the 
effective log conductivity (De Wit,  1995; Gutjahr et  al.,  1978; Sanchez-Vila et  al.,  2006). By including that 
constant or grouping it into the unknown mean to be estimated, the average upscaling process is still valid. We 
also note that for a nonuniform well flow field, the equivalent hydraulic conductivity is a function of geostatis-
tics and distance from the well (Bellin et al., 2020; Indelman, 2003; Indelman et al., 1996). Such an upscaling 
formulation is complex to implement and unnecessary for a distribution of local effective or equivalent hydraulic 
conductivities.

5.  Discussion and Conclusion
In this study, we develop an upscaled principal component inverse approach (UPCIA) for high-dimensional 
groundwater flow inverse problems. UPCIA is developed within the RGA framework on reduced dimensions 
through principal component analysis. It connects the low-dimensional field and high-dimensional field through 
upscaled principal components to reduce the computational overhead of forward model simulations. The prin-
cipal component coefficients are estimated by running the forward model on the upscaled effective coarse-grid 
field and then used to generate the fine-grid, high-resolution field based on the high-resolution principal compo-
nents. Uncertainty characterization can be implemented accordingly on the upscaled principal components. The 
proposed approach is tested in various synthetic numerical experiments of hydraulic tomography to estimate 
spatially distributed transmissivity or hydraulic conductivity fields. The numerical cases include steady-state 
pumping in 2-D moderately and highly heterogeneous fields, 2-D transient pumping, 3-D steady-state pumping, 
and a 2-D steady-state pumping in a structured, non-Gaussian field. The results indicate that UPCIA substantially 

Figure 6.  Inverse modeling of 3-D steady-state hydraulic tomography for estimating a log hydraulic conductivity field. (a) True field of the 3-D random field with a 
Gaussian covariance model at a resolution of 256 × 256 × 16. (b) Hydraulic head distributions for a pumping test. (c) upscaled principal component inverse approach 
estimation based on an upscaled model at a resolution of 32 × 32 × 16. (d) Data fitting.
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reduces computation time while still maintaining high accuracy similar to RGA performing forward model simu-
lations on high-resolution fields.

UPCIA uses the local spatial average of logarithmic hydraulic conductivity or transmissivity values for the 
upscaled coarse-resolution field, which corresponds to a geometric mean distribution of the hydraulic conduc-
tivity or transmissivity field. An iteratively updated Gaussian error is used to quantify the overall error between 
measurements and upscaled coarse-resolution forward model predictions. Our numerical cases confirm the valid-
ity of the Gaussian error assumption and demonstrate that it does not significantly affect the evaluation of the 
Hessian matrix of the objective function during iterations, resulting in accurate estimates of the principal compo-
nent coefficients on the upscaled principal components. All our tested cases are Gaussian fields with Gaussian or 
exponential covariance models. The structured, non-Gaussian field with inclusions embedded in a homogeneous 
field is actually also described by a Gaussian field with a Gaussian covariance model. The Gaussian assumption 
is a prerequisite for GA and UPCIA, which is also an assumption to use the upscaled coarse-resolution model 
with effective conductivity or transmissivity. Our upscaled model is an equivalent model with a distributed local 
geometric mean, which is different from the ensemble effective model (Sanchez-Vila et  al.,  2006), and still 
describes large-scale spatial distribution patterns at the coarse resolution. We have shown that the upscaling 
method provides accurate calculation of hydraulic heads in the given examples as long as the assumption of 
multi-Gaussian log conductivity is valid. However, our example with the structured inclusions shows that the 
inversions miss the hard conductivity contrast, which cannot be captured by the smoothness of the multi-Gaussian 
regularization.

UPCIA integrates downscaling into the inverse modeling through upscaled principal components. That is, only one 
inverse problem is solved for the principal component coefficients and the fine-resolution field can then be gener-
ated. If one inversely estimates the coarse-resolution field and then downscale it to fine resolution, it becomes two 
separate inverse problems with inconsistent inverse methods. In particular, downscaling from a coarse-resolution 
field to a fine-resolution field, such as kriging, may still require high computational costs. Furthermore, one may 
question whether it is necessary to estimate a fine-resolution field given that fine-scale features hardly affect 
hydraulic heads, which actually motivates the development of UPCIA. In fact, for problems that are originally 
planned to resolve fine-scale features, such as joint flow and transport problems (Kitanidis, 2015), UPCIA can 
be used to support characterizing heterogeneity in sufficient detail, examining whether finer resolution is neces-
sary and possibly determining an optimal resolution. Additionally, UPCIA is developed within the framework 
of RGA, which relies on the dimensionality reduction of principal components. Theoretically, UPCIA cannot 
be applied to random fields that may not be well-described by principal components and the multi-Gaussian 
assumption, such as binary connected fields. In fact, flow and transport behavior in such fields can be sensitive 
to small-scale heterogeneity (Kitanidis, 2015), which can make it difficult to apply the idea of UPCIA. We are 
conducting research to examine the effectiveness of UPCIA in such applications. However, regardless of its 
theoretical limitations, the simplicity and low computational cost of UPCIA always make it an attractive option 
to practice when fine-resolution forward models are needed, even for gradient-free methods (Park, 2020; Park & 
Lee, 2021; Yan et al., 2021). We can conveniently apply upscaled effective models at two different coarse resolu-
tions and compare their performance to determine if finer resolution is required.

Data Availability Statement
Matlab code is provided in the Text S1, while also stored in Github: https://github.com/yuezhao001/upscaled_
effective_model. All data used in the study is synthetically generated. No other data is needed.
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