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Abstract In this study, we propose a new approach for inverse modeling of hydraulic tomography (HT)
using the Fourier neural operator (FNO) as a surrogate forward model. FNO is a deep learning model that
directly parameterizes the integral kernel in Fourier space to learn solution operators for parametric partial
differential equations (PDEs). We trained a highly accurate FNO to learn the solution operators of PDEs in HT,
which can efficiently generate multiple channels of hydraulic head fields corresponding to specific pumping
tests in new parameter fields through a single forward pass. The trained FNO surrogate model is integrated with
the reduced geostatistical approach (RGA) to provide a powerful tool, named RGA‐FNO, for inverse modeling
of Gaussian random fields. RGA utilizes principal components to effectively reduce problem dimensions and
encode geostatistical information. FNO benefits from deep learning automatic differentiation, enabling efficient
backpropagation of gradients during inverse modeling. Our results show that RGA‐FNO can efficiently produce
satisfactory estimations for random transmissivity fields with an exponential covariance function, which is non‐
differentiable and visually non‐smooth. The RGA‐FNO application on steady‐state multi‐well HT is better than
the single‐well transient pumping test for inverse modeling. The data required for inverse modeling applications
of RGA‐FNO increases with the variance of the random transmissivity fields. FNO and other neural operator
models have the potential to play an important role in groundwater modeling, especially in inverse modeling and
experimental design, which often requires a large number of forward simulations.

1. Introduction
Hydraulic conductivity or transmissivity are key parameters that control groundwater flow through subsurface
materials. However, these parameters are spatially distributed and costly to measure directly, necessitating the use
of inverse modeling techniques to estimate them from hydraulic head measurements, such as hydraulic head data
collected during hydraulic tomography (HT). Inverse modeling involves solving a complex and often ill‐posed
inverse problem, which requires specialized approaches. Kitanidis (1995) proposed the geostatistical approach
(GA) in a Bayesian framework to tackle the inverse problem associated with Gaussian random fields (GRFs). In
this approach, the spatial covariance function of the target GRF is often assumed to be known. GA employs
gradient‐based methods to maximize the likelihood of a posterior distribution of a GRF realization, taking
available measurements/data and a prior into account.

The estimation of high‐resolution parameter fields using GA poses computational challenges, including the high
cost of matrix computation and storage, forward model simulation on high‐resolution parameter fields, and the
iterative forward simulations required to determine the Jacobian matrix numerically. To alleviate this compu-
tational burden, several efforts have been made, primarily focusing on accelerating matrix computation and
reducing dimensionality (e.g., Ambikasaran et al., 2013; Broyden, 1965; Kitanidis & Lee, 2014; Klein
et al., 2017; Lee et al., 2016; Lee & Kitanidis, 2014; Liu et al., 2013; Liu & Kitanidis, 2011; Nowak &
Cirpka, 2004; Nowak et al., 2003; Saibaba et al., 2012). Zhao and Luo (2020) introduced the reduced geo-
statistical approach (RGA) to estimate the projections on principal components, which reduces the dimension of
unknowns. They also proposed an iterative correction method to relax the requirement for precise prior infor-
mation (Zhao & Luo, 2021b). Additionally, a quasi‐Newton algorithm has been proposed to use a low‐rank
approximation of the Jacobian matrix, further reducing the number of forward simulations (Zhao & Luo, 2021a).

Despite the notable reduction in the number of forward simulations achieved through dimension reduction, the
reliance on numerical forward models remains a limitation since these models lack scalability with respect to the
resolution of the field. To address this challenge, several methods have been developed to accelerate forward
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model computation. The method of temporal moments transforms transient forward models to steady‐state, but
requires long sampling times and smooth measurements, which may be challenging in the field, especially for
monitoring wells with heavy‐tailed measurements located in low‐permeability regions (Yin & Illman, 2009).
Reduced‐order surrogate models aim to approximate solutions by constructing a solution subspace, which
typically requires extensive forward model computations for each flow scenario, such as pumping at different
wells in high‐resolution fields (Boyce & Yeh, 2014; Liu et al., 2013). The Upscaled Effective Model approach
(UPCIA), introduced by Zhao et al. (2022), aims to linearly upscale high‐resolution fields to effective low‐
resolution ones and conduct forward simulation, thereby reducing the computational time for individual for-
ward simulations. However, it should be noted that this approach may introduce additional approximation errors,
particularly when dealing with fields exhibiting significant small‐scale heterogeneities and employing covariance
functions, such as non‐differentiable exponential covariance functions. GRFs characterized by exponential
covariance functions display pronounced fluctuations at small scales, typically within a range shorter than the
correlation length, leading to visually non‐smooth behavior. While the term “non‐smoothness” describes visual
characteristics rather than a mathematical property, it's important to acknowledge that estimating high‐
dimensional, non‐smooth exponential GRFs poses challenges. This is because common upscaling methods
essentially average regions within a spatial window, akin to smoothing in image processing, which might
compromise the original non‐smoothness and variance of the fields. Conversely, linear interpolation methods
introduce smoothing effects and lose fidelity during downscaling, warranting further exploration of the
approximation errors, particularly for fields with substantial variance and non‐smooth features (Zhao et al., 2022).

In recent years, deep learning models have been utilized to develop surrogate models for groundwater inverse
modeling. Physics‐informed neural network (PINN) is an example that trains deep neural networks under
physical constraints, which are mathematically represented by partial derivative equations (PDEs) (Raissi
et al., 2017). An advantage of using PINN to estimate the spatial distribution of parameters is that automatic
differentiation (autograd) can be used to evaluate derivatives on the domain of the function pointwise, eliminating
non‐scalable, matrix‐wise computation in numerical models (Guo et al., 2023; Li & Tartakovsky, 2022; Tarta-
kovsky et al., 2020; Wang et al., 2021). However, PINN is an instance‐wise model that needs to be retrained when
parameters change. In addition, PINN shows obvious model error when the approximated spatial distribution
contains small‐scale nonsmoothness, such as GRF with an exponential covariance, which may require trans-
missivity measurements as reference data, and the amount of data may be substantial. Another approach involves
training a neural network as a surrogate for the forward model and combining it with traditional gradient‐based
inverse modeling methods. However, this approach demands high accuracy and generality in the surrogate model,
as gradients are not directly learned by the neural network (He et al., 2020; He & Tartakovsky, 2021; Xu
et al., 2021; Zhang et al., 2022; Zong et al., 2023). For example, some deep neural networks have been used to
learn the transient dynamics in groundwater flow rather than solving exact parameterized PDEs (Mo et al., 2019;
Tripathy & Bilionis, 2018; Zhou et al., 2022; Zhu & Zabaras, 2018).

In this study, we explore the potential of using the Fourier neural operator (FNO) as a surrogate forward model in
inverse modeling of HT. FNO is effective in learning solution operators of parametric PDEs. In the PDE, the
parameters and states can be continuous functions, and FNO transforms the functions through Fourier trans-
formation and directly parameterizes the integral kernel in Fourier space (Li et al., 2021a, 2022). In groundwater
modeling, we consider GRFs and their corresponding hydraulic response fields as spatial functions. These entities
are interrelated within a specified groundwater PDE. We train a FNO model using GRFs and hydraulic response
fields as inputs and outputs, aiming to learn the relationship between them and to approximate the solution
operator of the groundwater PDE. Furthermore, our study presents a novel approach that combines FNO with
RGA to efficiently inverse model the hydraulic conductivity fields characterized by significant heterogeneity.
These fields are essentially realizations of GRFs with non‐differentiable exponential covariance functions, whose
inverse modeling is recognized as a challenging task. The RGA method incorporates Principal Component
Analysis (PCA) and automatically captures the non‐smoothness of exponential GRFs in principal components.
Besides, the well‐trained FNO is an efficient forward model surrogate and can provide fast gradient back-
propagation though neural networks. Additionally, the accuracy of well‐trained FNO is invariant to resolutions of
input, enabling it to be trained using low‐resolution data and used for high‐resolution forward simulations so that
the training time can be shortened leading to a competitive model runtime (Li et al., 2021a). The RGA and FNO
combination can make accurate estimation of the low‐dimensional parameters and high‐fidelity recovery of the
exponential GRF.
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This note is organized as follows. First, we introduce parametric PDE in groundwater with pumping tests, the
architecture of FNO, and the RGA method with dimension reduction. Next, we explain our numerical experi-
ments, which include implementing FNO as a surrogate forward model for steady‐state and transient pumping
tests and integrating the surrogate model with RGA as an inverse model, referred to as RGA‐FNO. We then
present the results of these implementations. Additionally, we compare the RGA‐FNO inverse model with a
PINN inverse model. Prior to concluding, we undertake an evaluation of the RGA‐FNO model's performance by
manipulating the variances of the GRFs and the quantity of hydraulic head measurements. Finally, we conclude
with a discussion of the results.

2. Models and Method
2.1. Parametric PDE of Groundwater Flow With Pumping

The general governing equation for groundwater flow in saturated porous media with source/sink terms is
given by:

Ss
∂h
∂t
= − ∇ · [K(x)∇h] + Q (1)

where Ss (L
− 1) is the specific storage, t (T) is time, h (L) is hydraulic head, Q (T− 1) is the water accumulation/

reduction rate per volume, K (LT− 1) is the hydraulic conductivity, x is a vector of spatial coordinates. Assuming
that the aquifer is two‐dimensional, isotropic, and has constant saturated thickness and specific storage, x can be
represented by [x, y] and following the Dupuit‐Forchheimer assumption of horizontal flow, the depth‐integrated
groundwater flow is:

S
∂h
∂t
= − ∇ · [T(x, y)∇h] +W (2)

where S (− ) is the storativity, S = Ssb; T (L
2T− 1) is the transmissicity, T = Kb; W (LT− 1) is the water accu-

mulation/reduction rate per area,W = Qb; and b (L) is the saturated thickness. The two‐dimensional steady‐state
groundwater flow with pumping is given by:

0 = − ∇ · [T(x,y)∇h] +W (3)

The domain boundaries are subject to Neumann (ΓN) or Dirichlet (ΓD) boundary conditions (BCs) as:

n ·∇h(x,y) = qN ,(x,y) ∈ ΓN (4)

h(x,y) = hD,(x,y) ∈ ΓD (5)

where n is a unit directional vector used to denote flux direction in Neumann BC, qN is the flux rate on Neumann
boundary, hD (L) is the hydraulic head onDirichlet boundary. If T(x, y) is fully known, it can be solved numerically
for given BCs and pumping schedules. This is known as the forward problem. A forward model surrogate is ex-
pected to take the transmissivity field T(x, y) as input and predict hydraulic head fields h(x, y) as output.

2.2. Fourier Neural Operator (FNO)

Fourier neural operator (FNO) is a neural network‐based surrogate model proposed to approximate the solution
operator of a parametric PDE (Li et al., 2021a). For example, T (u,a) = 0 is a parametric PDE, where a(x)∈Rda

and u(x)∈Rdu represent parameter and state functions in a real space x∈Rdx , and the solution operator G maps
a(x)∈Rda to u(x)∈Rdu , where u(x) = G(a)(x) . The basic FNO structure is illustrated in Figure 1, it is composed
of an input operator P, L stacked Fourier convolution operatorsKi , and an output operatorD. During the forward
pass, a batch of input functions a(x) is structured as a 4D tensor, akin to a batch of images in computer vision. The
first dimension corresponds to the batch size, the second dimension represents the channel dimension, which in
this case is one since we are dealing with hydraulic transmissivity as the sole parameter. It's important to note that
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the term “channel” here refers to the second dimension of the 4D tensor, much like the red, green, and blue
channels in a colored image, and doesn't refer to the physical channels in hydraulic transmissivity realizations.
The third and fourth dimensions correspond to the height and width, signifying the resolutions of the discretized
domain. The input operator P lifts the single‐channel input function a(x) to a multi‐channel function
v1(x) = (Pa)(x) . Then, v1(x) passes through L stacked Fourier convolution operators, where each operator has
two paths: a frequency path denoted as K, which performs channel‐wise Fourier transformation F, convolution on
Fourier coefficientsR, and inverse Fourier transformation F− 1; and a real path that performs a convolutionW in
the real domain. The outputs of the two paths are then added and activated by a nonlinear activation function σ.
Finally, the output operatorDmaps vL(x) to the output space as u(x) = (DvL)(x) , which has the same dimension
as the output data. The forward pass can be expressed by:

u(x) = G(a)(x) = (DvL)(x), x ∈ Rdx (6)

G(a) = (D ∘KL… ∘K1 ∘P) a (7)

vl+1(x) = (Klvl)(x) = σl (Wlvl(x) + (Klvl)(x)) (8)

(Klvl)(x) = F− 1 (Rl ·F(vl))(x) (9)

The transformation operators in FNO can be parameterized by linear transformations or convolutional neural
networks. Additionally, if the discretized function is periodic and projected onto a unit domain of regular mesh,
we can implement Fast Fourier transformation (FFT) in the Fourier operator frequency path and truncate the
obtained modes to a constant number, enabling FNO to have quasi‐linear complexity corresponding to the
dimension of inputs. Since FNO is originally conceptualized in Fourier domain and applicable to continuous
functions, numerically, all finite‐dimensional approximations a(x)∈Rda and u(x)∈Rdu originate from the same
continuous function and share a common set of parameters. Therefore, FNO is resolution‐invariant and can be

trained with low‐resolution data (Rd low
a and Rd low

u ) and evaluated with high‐resolution data (Rdhigha and Rdhighu )

without performance deterioration (Kovachki et al., 2020; Li et al., 2020; Nelsen & Stuart, 2021).

FNO is a data‐driven method that learns from data by minimizing the match loss (Ldata), which can be evaluated
by integrating over the domain and aggregating over independent inputs. Numerically, the integral is evaluated at
discrete points where the reference data is sampled, as shown by:

Figure 1. Flowchart of the Fourier neural operator (FNO) approach. At the top of the figure, a is the input function, G is the
FNO, and u is the output function. In the middle of the figure, G is expanded to reveal its components and the forward pass. At
the beginning, the input operator P lifts the input function to a high‐dimensional space as v1. Next, v1 is processed by stacked
Fourier Convolution operators K and transformed to vL. Finally, vL is transformed by the output operator D to produce the
output function u. At the bottom of the figure, a Fourier Convolution operator Ki is expanded. It has a frequency path, which
conducts channel‐wise Fourier transformation F, convolution on Fourier coefficientsR, and inverse Fourier convolution F− 1;
and a real path, which conducts convolution W in the real domain. The results from the two paths are added and activated by a
nonlinear activation function σ.

Water Resources Research 10.1029/2023WR034939

GUO ET AL. 4 of 17

 19447973, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034939, W

iley O
nline L

ibrary on [13/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Ldata =
1
N
∑
N

j=1
∫ |uj(x) − G(aj)(x)|2dx ≈

1
ND

∑
N

j=1
∑
D

i=1
|uj (xi) − G(aj)(xi)|2 (10)

where uj represents the value of the real output function at grid point j within the domain and serves as the
reference data point for the FNO to learn from; N denotes the batch size, indicating the number of pairs of hy-
draulic transmissivity and hydraulic head fields in each batch; D signifies the number of discrete points utilized
for evaluating the integral. To ensure that FNO accurately matches the output function across the entire domain,
the integral must encompass the full domain. In this context, D is equal to the resolution of the output function,
which has been denoted as Rd low

u .

In hydraulic tomography, multiple pumping tests are conducted at different locations, and each of them can be
formulated as an individual forward problem, as described in Section 2.1. FNO can learn from all these forward
problems simultaneously by using multi‐channel output. For example, when simulating steady‐state HT, the input
of FNO is the transmissivity parameter field, and the output of FNO has multiple channels, with each channel
approximating a steady‐state hydraulic head field corresponding to a specific pumping test. The number of
channels matches the number of pumping tests, making FNO an all‐in‐one surrogate for steady‐state HT forward
modeling. This method can be easily generalized to transient pumping tests, where each output channel ap-
proximates the hydraulic head field at a specific time step for a particular pumping test. In this case, the number of
channels equals the number of pumping tests multiplied by the number of monitoring time steps, which is ex-
pected to be significantly larger than the number of channels for steady‐state pumping tests.

2.3. RGA Integrated With FNO (RGA‐FNO)

The HT inverse problem, which involves estimating a hydraulic transmissivity field T ∈Rm×1, is addressed using
the RGA framework based on Bayesian analysis and principal component dimension reduction (Zhao &
Luo, 2020). The low‐dimensional representation of lnT is achieved through an exponential activation function and
a linear transformation A with given structural parameters as:

T = Aμ,Z(α) = eμ+Zα (11)

where the projection matrix Z∈Rm×k is a linear combination of k scaled dominant principal components,
μ∈Rm×1 is the mean parameter value which may be non‐stationary and drifting in the domain, and α∈Rk×1 is
independent, identically distributed latent variables used as the low‐dimensional representation of the realization.
The relation between α and observations h through forward model f(·) can expressed as:

h = f(T) + ϵ = f( eμ+Zα) + ϵ (12)

where h∈Rn×1 corresponds to the observed hydraulic heads during pumping tests, the vector ϵ∈Rn×1 represents
the measurement errors, characterized by dimension n and covariance matrix (R). We operate under the
assumption that these measurement errors are independent and identically distributed (i.i.d.) as Gaussian noise.
Consequently, R is proportional to the identity matrix.

To estimate the unknown α, RGA formulates its Bayesian posterior distribution by considering the prior normal
distribution for the coefficients α and the likelihood of reference data:

p′′(a) ∝ exp(−
1
2
(h − f( eμ+Zα))TR− 1 (h − f( eμ+Zα )) −

1
2
αTα) (13)

The negative log‐likelihood of the posterior distribution is used as a loss function to be minimized:

min
α

lf(α) =
1
2
(h − f( eμ+Zα))TR− 1 (h − f( eμ+Zα)) +

1
2
αTα (14)
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The minimizer of Equation 13 is the maximum a posteriori (MAP) estimate,
which can be found through a gradient‐based Newton or quasi‐Newton
method. However, computing the Jacobian matrix of the loss function with
respect to α at each iteration can be computationally expensive using tradi-
tional finite‐difference methods that iteratively perturb the components of α.

A well‐trained FNO is used as a surrogate for the numerical forward model
in RGA:

f( eμ+Zα) ≈ FNO( eμ+Zα) (15)

Following the idea of Bayesian neural network (Hernandez‐Lobato &
Adams, 2015), at each iteration of the inversion optimization, instead of
optimizing an individual realization, we sample M realizations of α from the
normal distribution, and optimize the mean μα and variance Cα of the dis-
tribution. The coefficients in FNO are frozen during inversion optimization,
and the loss function l(α) is the mean squared error (MSE), evaluating the data
match to the observations as:

min
μα ,Cα

l(α; h, FNO) =
1
M
∑
M

i=1

⃒
⃒h − FNO( eμ+Zαi)

⃒
⃒2, α ∼ MVN(μα, Cα) (16)

By implementing the FNO as the surrogate forward model in the RGA, a method we refer to as RGA‐FNO, we
establish a direct link between the parameter α and the loss function within a unified deep learning computational
graph. The integration facilitates the efficient computation of the gradient of the loss function with respect to α via
automatic differentiation (autograd). This approach for computing the gradient is more efficient compared to
traditional explicit methods, which rely on numerically approximating the Jacobian by iteratively perturbing the
components of α using finite differences.

3. Numerical Experiments
3.1. Experimental Domain and Synthetic HT Data Set

In our experiment, we model the transmissivity field as log‐normally distributed. Specifically, lnT is a realization
derived from a GRF with an exponential spatial covariance function, incorporating the 50 highest‐ranked prin-
cipal components. This configuration of the lnT field results in more pronounced non‐smoothness, thereby
rendering the inverse estimation process more challenging. In contrast, previous PINN studies, (e.g., Guo
et al., 2023; Tartakovsky et al., 2020; Wang et al., 2021; Xu et al., 2021), typically employ GRFs with Gaussian
covariance functions or limit themselves to no more than 20 principal components. This leads to smoother lnT
fields, making the inverse estimations comparatively less complex. The experimental domain is square with a
resolution of 128 × 128 and a scale of 320 m × 320 m. The discretization is piecewise constant and grids are
square and equal‐spaced, and the bottom‐left corner is coordinated at (0 m, 0 m). Figure 2a shows the hydraulic
head map and Figure 2b shows a lnT realization. We implement HT in a domain with impermeable top and bottom
boundaries (Neumann boundary) and constant head left and right boundaries (Dirichlet boundary). Ss is uniform
and constant across the domain, with a value of 0.0001 m− 1. The geostatistical and hydrogeological parameters
are listed in Table 1.

We conducted two types of HT experiments: one steady‐state and the other transient. For the steady‐state HT
setup, we used five pumping wells (Table 2). Each pumping test involved extracting water from one of these wells
at a constant rate of 3.6 m3/hr (0.001 m3/s). As a result, a transmissivity field was paired with five corresponding
hydraulic head fields. In the transient HT setup, a single pumping test was conducted at well p3 (Table 2) at the
same rate. The initial hydraulic head across the domain was set to 0 m. Hydraulic head observations were
collected 10 times within an hour, at intervals of 0.1 hr. After 1 hr, the hydraulic head field approached a near
steady state. Consequently, each input transmissivity field was paired with 10 hydraulic head fields in this
experiment.

Figure 2. Numerical experiment setup for the HT experiment. (a) The well
network consisting of 5 pumping wells (p1–p5) represented by red stars, and
36 monitoring wells located at purple dots. Dirichlet (diri) boundary cells are
denoted by blue squares, and Neumann boundary (neum) cells are denoted
by black squares; (b) The reference lnT field used in the pumping test
simulation.
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For each of the two experiments, we conduct the corresponding HT survey
with 1,000 transmissivity realizations for FNO training and validation. The
hydraulic head fields were solved by a self‐developed Galerkin finite element
method (FEM) solver, with a tolerance set at 1 × 10− 8. All hydraulic head
values were negative. Although the forward code was developed using
MATLAB 2022a, any compatible solver can be used to replicate the results.
The hardware used for these computations was Intel(R) Core(TM) i9‐10900
CPU 2.81 GHz.

3.2. Computation Implementation

3.2.1. FNO Training

The input of FNO formodeling is a 4D tensorwith a channel dimension of one,
representing the 2D transmissivity field discretized on the 128 × 128 domain.
The input operator P is a local, pointwise transformation parameterized by a
linear layer with 128 output dimensions. The Fourier section comprises four
identically structured Fourier convolution operators (L = 4), with each fre-
quency path truncating the 20 highest and lowest frequent modes (mode= 20),
and the convolution layers in either Fourier or real space (R andW) are squared
with width = 64 and stride = 1. The nonlinear Gaussian Error Linear Unit
(GELU) activation function σ is used after the first three Fourier operators.

Padding with ratio = 2 is added and removed before and after the section. The output operatorD comprises three
local, pointwise transformations with output dimensions of 128, 64, 5, and the GELU activation function σ is used
after the first two layers. The channel dimension of the output is the same as the number of simulated hydraulic head
fields. For steady‐state FNO, the channel dimension is five where each channel corresponds to a steady‐state
hydraulic head field under a specific pumping test. For transient FNO, the channel dimension is 20 where each
channel corresponds to a hydraulic head field at a specific time step in the single pumping test.

The numbers of HT simulations used to train and validate FNO are 900 and 100, respectively. The spatial di-
mensions of the input and output are upscaled to a 64 × 64 resolution and pointwise normalized. During the
training, the number of iterations is 500, at each iteration, FNO is trained by one batch of data, and the batch size is
10. The loss function is MSE, the optimizer is Adam with a learning rate of 0.001 (Kingma & Ba, 2017). The
training is conducted on Google Colab, an online cloud computation platform equipped with a Tesla A100 GPU
backend (Bisong, 2019). The training processes of steady‐state and transient FNO are completed within
approximately 825 and 830 s.

3.2.2. RGA‐FNO Inverse Modeling

During inverse modeling, we collect pointwise hydraulic head data to estimate α of the underlying transmissivity
field. The data is collected from 36 monitoring wells in each hydraulic head field (points in domain). These wells

are systematically distributed in a 6 × 6 square pattern. The locations of wells
at the four corners are listed in Table 2, with a 39.6‐m separation between
adjacent wells (Figure 2a). For stead‐state HT, the hydraulic head measure-
ments are taken from the 36 monitoring wells across five pumping tests,
resulting in a total of 180 measurements. In transient HT, the hydraulic head
measurements from the 36 monitoring wells are taken at each time step,
yielding a total of 360 measurements. To account for real‐world variability,
these hydraulic head measurements are subject to random noise with a
variance of 5% relative to the true values.

During optimization, the gradient of the loss function with respect to α is
evaluated by autograd, the optimizer is Stochastic Gradient Descent (SGD)
optimizer, the learning rate is fixed at 1 during the entire optimization, and the
optimization undergoes 500 iterations, early stop or tolerance is not used. The
optimization is implemented on the same Google Colab with a Telsa A100
GPU at backend. The runtime for both the steady‐state and transient

Table 1
Hydrogeological and Geostatistical Parameters for the Hydraulic
Tomography Experiment

Parameter Values

Domain size, Lx × Ly 320 m × 320 m

Grid spacing, Δx × Δy 2.5 m × 2.5 m

Spatial resolution, nx × ny 128 × 128

Thickness, b 1 m

Specific storage, Ss 0.0001 m− 1

Natural logarithm of transmissivity, lnT

Mean 0 m2/s

Variance of lnT, σ2lnT 0.25 m4/s2

Correlation length, λx × λy 64 m × 48 m

Left Boundary h = 0 m

Right Boundary h = 0 m

Pumping Rate 0.001 m3/s

Table 2
Coordinates of Pumping Wells and Corner Monitoring Wells

Well type Well location (index) Coordinates (x, y)

Pumping Lower‐left (p1) (80 m, 80 m)

Upper‐left (p2) (80 m, 240 m)

Center (p3) (160 m, 160 m)

Lower‐right (p4) (240 m, 80 m)

Upper‐right (p5) (240 m, 240 m)

Monitoring Lower‐left (61 m, 61 m)

Upper‐left (61 m, 259 m)

Lower‐right (259 m, 61 m)

Upper‐right (259 m, 259 m)
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experiments is approximately 12.5 s. This model structure and configurations of FNO training and RGA‐FNO
optimization are found through trial and error.

3.3. Quantitative Metrics

For the forward model surrogate, the prediction error is quantified by the forward relative residual metric, which is
formulated as:

ϵh =
‖hTRUE − hFNO‖22

‖hTRUE ‖22
, ∀ (x, y) ∈ Ω (17)

where hTRUE and hFNO represent the true and FNO‐approximated hydraulic heads, respectively. Similarly, the
inverse relative residual ϵT is evaluated by:

ϵT =
⃦
⃦T̂(x, y) − T(x, y)

⃦
⃦2
2

‖T(x,y)‖22
, ∀ (x, y) ∈ Ω (18)

where T(x, y) and T̂(x,y) are the true and estimated transmissivity vectors. Moreover, the inverse result is
assessed by map accuracy, which is defined as the percentage of the grid that has transmissivity correctly inverted
(Kang et al., 2017). The condition for correct inversion is that pointwise estimation error ε(x, y) is less than a
predefined threshold, set to 10% in this study:

ε(x,y) =
⃒
⃒T̂(x, y) − T(x, y)

⃒
⃒

Tmax − Tmin
, ∀ (x, y) ∈ Ω (19)

4. Results and Discussion
4.1. FNO for Steady‐State HT

4.1.1. Evaluation of Steady‐State Forward Model Surrogate

To validate the FNO as an effective surrogate forward model of steady‐state HT, we conducted simulations of the
full steady‐state HT surveys (p1–p5) using 100 different transmissivity realizations. Each of these transmissivity
fields is set at a resolution of 128 × 128. These fields serve as inputs for the FNO, which is then tasked with
predicting the corresponding steady‐state hydraulic heads for the five pumping tests (p1–p5). The accuracy of
these predictions is assessed by comparing them with reference data derived from FEM simulations. Visualized in
Figure 3 are five illustrative validation cases, where each column represents a set of input, output, reference, and
comparison. For example, Figure 3a1 presents a lnT field named R1, Figures 3b1 and 3c1 depict the hydraulic
heads simulated by FEM (reference, hTRUE) and FNO (prediction, hFNO), respectively, under a pumping test at p1
in the R1 field. Figure 3d1 plots sampled points from hFNO and hTRUE across all five pumping tests in R1,
showcasing their strong alignment with a R2 score of 0.9974, indicating a well‐simulated steady‐state HT test
by FNO.

Similarly, Figures 3a2–3a5 present four other randomly chosen realizations (R2–R5) from the validation set.
Corresponding, Figures 3b2–3b5 show the reference solutions from FEM for distinct realizations R2–R5 and
pumping tests p2–p5, Figures 3c2–3c5 display FNO‐predicted hydraulic heads. Finally, Figures 3d2–3d5
compare the sampled points. The agreement between predicted and reference hydraulic maps and the align-
ment of sampled points (R2 scores all above 0.99) demonstrate FNO's robustness and generality, confirming its
accuracy in this validation exercise.

Quantitative evaluation is performed independently on each pumping test using the relative error as a metric. The
means and standard deviations of the relative errors for pumping tests p1–p5 are 3.43% ± 1.60%, 3.75% ± 1.87%,
2.75% ± 1.06%, 3.59% ± 1.54%, 3.28% ± 1.17%, respectively. The results show that FNO successfully learns the
solution operator of the groundwater flow equation and can generalize to unseen transmissivity fields generated
from the same GRF, producing accurate predictions of hydraulic heads for the configured HT. Furthermore, FNO
is resolution‐invariant within certain range considering that it is trained with low‐resolution data (64 × 64) and
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used for high‐resolution evaluation (128 × 128). We also train FNO with data of lower resolution (32 × 32), but
the accuracy of the model is not satisfactory. The resolution‐invariant property and limitation of the FNO depend
on the model structure and need further investigation, which will not be discussed in this study. The major
advantage of FNO is its computational speed. For example, a single forward pass of FNO (a steady‐state HT
simulation of pumping tests at all five pumping wells) takes only 0.01 s, compared with the HT simulation of FEM
model, which takes about 0.48 s, demonstrating the improvement in computational efficiency provided by the
FNO. We also train FNO to learn the Darcy flow PDE without sinks, and the results are shown in the Supporting
Information S1.

4.1.2. Evaluation of RGA‐FNO Inverse Modeling

The outcomes of the RGA‐FNO inverse modeling utilizing the steady‐state FNO forward model surrogate are
depicted in Figure 4. Specifically, Figures 4a1 and 4a2 illustrate the lnT field alongside the best estimation,
marked by a relative error of 15.07% and a map accuracy of 94.78%. In Figures 4b1–4b5, the reference hydraulic
heads produced using the FEM forward model and the true transmissivity field are shown, while Figures 4c1–4c5
exhibit the hydraulic head fields for the five pumping tests, predicted by FNO with the best‐estimated trans-
missivity field. The predictions correspond well to the references in both magnitude and contours, with relative
errors for pumping tests p1–p5 at 2.47%, 4.37%, 2.04%, 2.58%, and 3.27%. The errors arise from a combination of
FNOmodel inaccuracies and disparities between the true and estimated transmissivity fields. Figure 4d illustrates

Figure 3. Steady‐state FNO surrogate forward model results of different realizations and pumping tests. (a1–a5) lnT realizations, named as R1–R5; (b1–b5) Reference or
true hydraulic heads with respect to different realizations and pumping locations (hTRUE), for example, R1‐p1‐hTRUE means the FEM‐solved or true hydraulic heads in
pumping test p1 at lnT realization R1; (c1–c5) Hydraulic heads predicted by FNO with respect to different realizations and pumping locations (hFNO), for example, R1‐
p1‐hFNO means the FNO‐predicted hydraulic heads in pumping test p1 at lnT realization R1; (d1–d5) hTRUE versus hFNO for each realizations at monitoring well
locations, R2 coefficient greater than 0.99 for all five realizations.
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the pointwise estimation variance, assessed using a Monte Carlo technique with 200 samples drawn from the
normal distribution with optimized mean and variance, demonstrating low uncertainty in transmissivity estimates.
Comparisons between true and best‐estimated latent random variables α are presented in Figure 4e, while
Figure 4f displays a cross‐plot of observed (reference data) and predicted hydraulic heads, with an R2 coefficient
exceeding 0.99. The MSE at the last iteration of the optimization is 0.003 which can be seen as the error (squared
error) of fitting the measurements.

The estimated and actual α values, represented by blue lines and red dots in Figure 4e, exhibit strong alignment, as
do the predicted and observed hydraulic heads. This alignment underscores the effectiveness of autograd‐enabled
gradient backpropagation in achieving desired convergence (α alignment) while minimizing the objective
function (hydraulic head alignment). The inverse model produced accurate estimations without utilizing trans-
missivity measurements, and it optimizes α for 500 iterations with a total computational time of approximately
12.5 s. In comparison, the RGA with an FEM solver (RGA‐FEM) optimizes α for 6 iterations and achieves a map
accuracy of 95.31% and a relative error of 19.69%, and the total computational time is about 161 s. RGA‐FNO
demonstrated comparable accuracy to RGA‐FEM but with faster performance. This enhanced efficiency can be
attributed to RGA‐FNO's employment of automatic differentiation (autograd) for efficiently computing the
gradient values of the loss function with respect to latent variables. This process is integrated within the deep
learning computational graph, with each iteration requiring only 0.025 s. In contrast, RGA + FEM calculates the
Jacobian matrix through finite difference perturbation. Specifically, 50 entities of α are sequentially perturbed by
1e− 6 to derive the Jacobian matrix, requiring 50 forward simulations over 24 s. Such a comparison distinctly
highlights the efficiency and speed advantages of employing a neural network‐based surrogate forward model in
inversion processes. It is noteworthy that the RGA‐FEM model, as originally proposed by Zhao and Luo (2020),
relies solely on the Jacobian matrix for optimization, without incorporating any adjoint‐state analysis. They assert
that utilizing the Jacobian matrix alone is adequate for achieving satisfactory results. Although implementing
adjoint‐state analysis in RGA‐FEM could potentially enhance optimization, it would require additional forward
simulations, leading to an increase in computation time.

Figure 4. RGA‐FNO inverse results with the trained steady‐state FNO surrogate forward model. (a1) True lnT realization; (a2) Best estimation with a relative error of
15.07% and map accuracy of 94.78%; (b1)–(b5) Reference hydraulic heads of each pumping test that simulated by FEM with the true transmissivity field (hTRUE); (c1–
c5) Predicted hydraulic heads of each pumping test that from FNO with the estimated transmissivity field (hFNO); (d) Variance of the estimated lnT, evaluated by the
Monte Carlo method; (e) True latent variables and best estimates (red dots denote true, and the blue line denotes best estimates); (f) Observed (reference data) versus
predicted hydraulic heads.

Water Resources Research 10.1029/2023WR034939

GUO ET AL. 10 of 17

 19447973, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034939, W

iley O
nline L

ibrary on [13/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.2. FNO for Transient HT

4.2.1. Evaluation of Transient Forward Model Surrogate

Illustrated in Figure 5, the transient FNO's performance is shown. The top row displays true hydraulic heads
(hTRUE), while the second row exhibits FNO predictions (hFNO) for time steps ranging from 0.1 to 1 hr in a
pumping test centered around the domain's midpoint (p3). The parameter field is depicted in Figure 6a. The color
map and contour lines affirm that the FNO's predictions closely align with the outcomes of numerical simulations
at each time step. Additionally, for the time interval t = 0.8–1.0 hr, the contour lines assume a perpendicular
orientation with respect to the top and bottom boundaries, consistent with the impermeable Neumann BCs.

Figure 5. Comparison of transient FNOmodel (hFNO) with the numerical simulation (hTRUE) for the transient pumping test, hydraulic head distribution in pumping test at
well p3 which is located at the center of the domain, first row shows hTRUE from numerical simulation at t= 0.1–1.0 hr; second row shows hFNO prediction; each column
shows a time step, from left to right, t = 0.1, 0.2, … 1.0 hr. The relative errors between hFNO and hTRUE, ϵ

t=ti
h , in time order are 2.20%, 2.11%, 1.99%, 1.87%, 1.78%,

1.69%, 1.64%, 1.60%, 1.56%, 1.54%.

Figure 6. RGA‐FNO inverse results with the trained transient FNO surrogate forward model. (a1) True lnT realization;
(b) Best estimation with a relative error of 24.15% andmap accuracy of 83.55%; (c) Variance of the estimated lnT from RGA‐
FNO, evaluated by the Monte Carlo method; (d) True latent variables and best estimates (red dots denote true, and the blue
line denotes best estimates); (e) Observed (reference data) versus predicted hydraulic heads, observed data is corrupted with
5% noise; (f) reference water heads and predicted water heads at monitoring wells in pumping test p3, each color notes a
unique monitoring well, solid lines note reference data, it includes the zero‐head initial condition at t = 0, stars note model
prediction, it starts from t = 0.1 hr.
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Among the 100 validation pairs, the mean and standard deviations of the relative errors in hydraulic heads at each
time step are as follows: 3.89% ± 3.40%, 3.55% ± 2.16%, 3.33% ± 2.02%, 3.17% ± 1.91%, 3.04% ± 1.81%,
2.95% ± 1.73%, 2.87% ± 1.67%, 2.81% ± 1.61%, 2.77% ± 1.56%, 2.73% ± 1.53%. It is noteworthy that the
relative errors tend to be higher and more variable at the earlier time steps. This trend can be attributed to the
smaller magnitude of hydraulic heads during the initial time steps, stemming from the zero‐head initial condition.
Conversely, as time progresses and reaches a point beyond 0.8 hr, the hydraulic heads attain a steady state, leading
to more stable relative errors.

4.2.2. Evaluation of RGA‐FNO Inverse Modeling

Figure 6 displays the outcomes of the RGA‐FNO inverse modeling technique employing the surrogate forward
model of transient FNO. Figures 6a and 6b display the true lnT field and the corresponding best estimation,
yielding a relative error ϵT of 24.15% and a map accuracy of 83.55%. Comparatively, the RGA‐FNO approach,
despite utilizing more reference data in the form of 360 hydraulic head measurements from a single‐well transient
pumping test with 10 time steps, is less accurate than the steady‐state case. However, the inverse estimation
remains representative, effectively capturing the primary high and low transmissivity regions within the domain.
Figure 6c offers insight into the pointwise variance of the estimation, computed based on 200 samples drawn from
the optimized mean and variance of the Multivariate Normal distribution, which shows larger uncertainty than the
steady‐state case at most of the grids. Figure 6d visually contrasts the true and best estimated latent random
variables α. Utilizing the estimated lnT field and transient FNO model, we approximate the hydraulic heads. The
relative errors at each time step (t = 0.1, 0.2, … 1.0 hr) are computed as 10.54%, 9.41%, 8.30%, 7.51%, 6.93%,
6.47%, 6.10%, 5.85%, 5.62%, and 5.43%, respectively. Notably, these errors are higher than those associated with
the transient FNO, primarily attributed to variations between the true and estimated transmissivity fields.
Figure 6e displays observed (reference data) and predicted hydraulic heads at each time step, with distinctive
colors marking different time steps. The regression analysis yields an R2 coefficient surpassing 0.99. Figure 6f
provides a visualization of reference and predicted hydraulic heads at monitoring wells in pumping test p3. Each
color denotes a distinct monitoring well. Solid lines represent reference data, incorporating the zero‐head initial
condition at t = 0, while stars depict model predictions, commencing from t = 0.1 hr. The plot confirms that the
transient FNO predictions closely align with reference data.

Despite its impressive performance, the transient FNO does possess inherent limitations. Firstly, it lacks autor-
egressive modeling capability. Transient pumping tests inherently involve an autoregressive structure, where
subsequent time steps rely on previous ones. However, the transient FNO employs individual channels to
represent time steps, lacking explicit autoregressive dependencies among these channels. Secondly, the transient
FNO exhibits reduced accuracy, particularly in the prediction of hydraulic heads during early time steps. This
limitation has been elucidated in Section 4.2.1.

The complexity of the FNO model is contingent upon the number of hydraulic head fields derived from distinct
pumping tests and varying time steps within a single test. This complexity translates to an augmented number of
parameters within the model. If hydraulic heads are monitored across multiple time steps, the output operator
must be expanded to incorporate additional output channels. This complexity amplifies in scenarios involving
multiple transient pumping tests, necessitating a doubling of the output's channel dimension. In light of these
considerations, the recommendation leans toward employing the steady‐state FNO. This choice stems from the
transient FNO's superior accuracy in predicting steady‐state hydraulic heads. Furthermore, the utilization of HT
pumping tests conducted at different locations serves as a more effective strategy for estimating local
transmissivity.

4.3. RGA‐FNO Versus PINN

In this section, we compare RGA‐FNOwith PINN for inverse modeling of a steady‐state HT. The setup of HT and
RGA‐FNO is the same as in the previous section. The PINN model is newly proposed based on HT‐PINN (Guo
et al., 2023) and TgNN‐Geo (Wang et al., 2021). It consists of five forward nets and an inverse net. Each forward
net approximates the hydraulic heads for a specific pumping test, with spatial coordinates serving as input and
hydraulic heads at the location being predicted as output. The inverse net, GANet, is pretrained as a pointwise
stochastic model that approximates the spatial distribution of the GRF, for example, T(x,y; α)≈ GANet(x,y;α),
x,y∈R1,α ∈ Rk, T(x, y; α) ∈ R1. The architecture of GANet is based on the scaled dot‐product attention
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mechanism (Vaswani et al., 2017). It takes spatial coordinates (x, y) and latent random variables (α) as input and
predicts transmissivity as output. GANet is pretrained using low‐resolution realizations from the GRF with
exponential covariance. After training, GANet learns the map of the principal components. It incorporates spatial
coordinates and leverages autograd to evaluate spatial derivatives as well as PDE constraints.

During inverse modeling, both the inverse and forward nets are trained together to estimate the transmissivity
field and hydraulic heads. The training requires reference data for data match loss and collocation data for PDE
loss. The reference data for the forward nets are observed hydraulic heads, which are the same as the reference
data in RGA‐FNO. The reference data for the inverse net are 36 transmissivity measurements, which are evenly
collected in the domain and indicated by purple triangles in Figure 7a. More details about HT‐PINN structure,
GANet pretraining, collocation points, PDE constraints, and inverse modeling procedures can be found in Sup-
porting Information S1 and Guo et al. (2023). The pretraining and inverse modeling are conducted on the Google
Colab Platform with Telsa A 100 GPU, the pretraining takes 489 s, and the inverse modeling takes about 8,937 s.

The performance of RGA‐FNO and HT‐PINN in inverse modeling is presented in Figure 7. Figure 7a displays the
true lnT field. Figures 7b and 7c display the estimations from RGA‐FNO and HT‐PINN, Figure 7d plots the true
and estimated latent random variables where blue line denotes the true α, red dot denotes the estimation from
RGA‐FNO, green dot denotes the estimation from HT‐PINN. Both models produce estimations in good agree-
ment with the true realization. However, RGA‐FNO captures small‐scale non‐smoothness better than HT‐PINN.
It is not only found from the visual appearance in Figures 7b and 7c, but also from the fit of α at indices from 30 to
50, which represents the high‐frequency patterns as well as small‐scale heterogeneity and non‐smoothness. A
detailed look at Figure 7d, we can find that, while index is over 30, the red dots are closer to the blue line than
green dots, suggesting that the estimation from RGA‐FNO has a more similar high‐frequency patterns to the true
field than HT‐PINN.

Table 3 provides a comprehensive evaluation of the models' performance, including map accuracy, relative error,
and runtime. For HT‐PINN, the number of transmissivity measurements (NK) is 36, and the map accuracy is

Figure 7. Inverse results of RGA‐FNO and HT‐PINN. (a) The reference field, in which purple triangles denote transmissivity
measurements used by HT‐PINN; (b) Estimated field by RGA‐FNO; (c) Estimated field by HT‐PINN; (d) True and
estimated latent variables α from two inverse models, blue line denotes the true α, red dot denotes the estimation from RGA‐
FNO, green dot denotes the estimation from HT‐PINN; (e) Observed hydraulic heads (reference data) versus FNO
predictions; (f) Observed hydraulic heads (reference data) versus PINN predictions.
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90.23%. The relative error for forward simulations ranges from 12.26% to 31.31%, and the runtime is 8,937 s. For
RGA‐FNO, no transmissivity measurements are required, and the Map accuracy is 91.74%. The relative error for
forward simulations ranges from 2.01% to 3.49%, and the runtime is only 15 s. Overall, RGA‐FNO outperforms
HT‐PINN in all evaluation metrics, especially in terms of data requirement, forward model relative error, and
runtime. HT‐PINN needs transmissivity measurements for accurate inversion since the plain neural networks with
a large number of coefficients (up to millions) may easily overfit the spatial function of lnT (Guo et al., 2023;
Wang et al., 2021); however, FNO does not require any transmissivity measurements, and the forward simula-
tions are more accurate. Additionally, the runtime of RGA‐FNO is much shorter than that of HT‐PINN. The
runtime for both methods only considers the time taken for inverse estimation and does not include the pretraining
time for the FNO and inverse network in HT‐PINN, as they only need to be trained once. However, HT‐PINN is
not easily generalizable and needs to be retrained for each new realization even with the same geostatistical
parameters, as a contrast, FNO only needs to be retrained when the geostatistical parameters of the GRF change.
During the estimation of α, the combination of RGA and FNO is mutually beneficial as the principal components
effectively utilize the geostatistical information, and FNO provides efficient and precise forward simulations. In
contrast, HT‐PINN relies on the inverse net, which even though pre‐trained, still has model error, and the
initialized forward nets are biased and require training for co‐convergence, which can be a time‐consuming
process. Without accurate geostatistical information and forward models, transmissivity measurements play a
crucial role in HT‐PINN during inverse modeling.

4.4. Data Demands for RGA‐FNO

We utilize RGA‐FNO to model GRFs across a range of parameter variances and different volumes of hydraulic
head measurements. Through these applications, we aim to demonstrate both the versatility and constraints of the
RGA‐FNO methodology. The variance of lnT, denoted as σ2lnT , is systematically increased from 0.25 to 1.0, 2.0,
4.0, and 8.0. This alteration augments the magnitude of the fluctuation of lnT. All other domain properties remain
consistent with previous experiments (Table 1). The study employs HT involving five steady‐state pumping tests.
The FNO's architecture and training configurations remain identical to those of the previous experiment.
Following training, the trained FNO is combined with RGA for inference, employing known measurements—the
steady‐state hydraulic heads observed from the monitoring wells. In previous experiments, the domain features 36
monitoring wells (Figure 2a). However, in this section, the distribution of monitoring wells is adjusted to square
configurations of 4 × 4 and 8 × 8. While the locations of the monitoring wells at the four corners remain un-
changed, the remaining wells—both at the square boundary and within the square—are uniformly distributed.
This manipulation yields two sets of monitoring well configurations, each containing 16 and 64 wells, respec-
tively, offering differing volumes of measurements for inference. All optimization settings mirror those of pre-
vious experiments, with the exception of the number of hydraulic head measurements. The assessment metrics
encompass the accuracy of the estimated lnT, the relative error of the estimated T, and the relative errors of the
estimated hFNO in each pumping test.

Table 4 presents the inversion metrics for random fields with increasing transmissivity variances (σ2lnT ) in
different scenarios. The table is structured to show accuracy (%) and relative error values for both hydraulic head
(ϵh) and transmissivity (ϵT) predictions under various conditions. Each section of the table corresponds to different
σ2lnT values: 0.25, 1.0, 2.0, 4.0, and 8.0. For each σ2lnT value, the table displays accuracy percentages for different
numbers of monitoring wells (Nh), specifically 16, 36, and 64. Additionally, ϵh across all five pumping tests (p1,

Table 3
Performance of Different Inverse Models

Model NK Map accuracy (%)

Relative error (%)

Runtime (s)Inverse

Forward

p1 p2 p3 p4 p5

HT‐PINN 36 90.23 18.07 21.41 12.26 13.78 31.31 20.06 8,937

RGA‐FNO 0 91.74 16.74 3.49 2.14 2.01 2.21 3.23 70
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p2, p3, p4, p5) are provided. These results illustrate the varying performance
of the inversion approach in different scenarios of random fields with
different variances.

The analysis of accuracy in relation to different variances and numbers of
monitoring wells reveals significant insights. Firstly, when considering the
effect of σ2lnT on accuracy, it's evident that as the variance increases, the ac-
curacy of the inverse modeling decreases. This trend is consistent across all
three scenarios of monitoring well numbers (Nh = 16, 36, 64). This obser-
vation implies that higher variance fields pose a greater challenge to accurate
inverse modeling, resulting in decreased accuracy in predicting both hy-
draulic heads and transmissivity. Secondly, the impact of the number of
monitoring wells is notable. Generally, as the number of monitoring wells
increases, the accuracy of the inversion process improves. This trend can be
observed across different variance levels. Higher numbers of monitoring
wells (Nh = 36, 64) consistently lead to higher accuracy percentages and
lower error values for both ϵh and ϵT, compared to the case with fewer
monitoring wells (Nh = 16). In summary, the findings suggest that accurate
inverse modeling is affected by both the variance of the random field and the
number of monitoring wells. While higher variance random fields challenge
accurate predictions, having a greater number of monitoring wells enhances
the accuracy of the inversion process. These observations emphasize the
importance of considering these factors when conducting hydraulic tomog-
raphy and inverse modeling in real‐world scenarios.

5. Conclusion
In this study, we proposed a new method called RGA‐FNO and tested it on examples of inverse modeling of HT,
which utilizes FNO as a surrogate forward model. As a data‐driven model, FNO can learn the solution operator of
PDEs in HT from data without the need to impose any PDE or BC constraints explicitly in the loss function during
training. The well‐trained FNO is accurate and generalizable and can solve parametric PDEs with new parameter
instances through a single forward pass, providing an efficient alternative to traditional forward models solved by
numerical methods. By replacing the traditional numerical solver in the RGA, the new RGA‐FNOmodel achieves
the same level of accuracy as the traditional RGA model, but with greater efficiency. This is because FNO, as a
deep learning forward model, can backpropagate gradients through autograd efficiently. RGA‐FNO is a powerful
approach for inverse modeling of heterogeneous, non‐smooth GRFs. RGA effectively reduces the dimension of
unknowns and encodes non‐smoothness in the prior distribution, while FNO is flexible enough to incorporate
upscaling and provide reliable forward simulations. Together, RGA‐FNO accurately estimates the parameters of
the GRF, making it a valuable tool for a variety of applications in geostatistics and beyond. While we employ
FNO for simulating both steady‐state and transient HT, the performance of transient FNO falls short compared to
steady‐state FNO, despite its increased complexity and number of measurements. The integration of steady‐state
HT with multiple pumping wells at different locations emerges as a more effective strategy for enhancing the
performance of the RGA‐FNO model. Compared to the PINN inverse model, RGA‐FNO does not require
transmissivity measurements and produces more accurate estimations. Additionally, the inverse modeling of
RGA‐FNO is more efficient than PINN since FNO is trained for a GRFwith specific geostatistical parameters and
can be used to model the forward problems of all realizations from the GRF, however, PINN needs to retrain
forward neural networks for every new realization even though it is from the same GRF. During the RGA‐FNO
application, higher variances of the underlying lnT are associated with diminished accuracy, whereas higher
monitoring well numbers consistently contribute to improved accuracy. These findings underscore the crucial role
of these factors in practical hydraulic tomography and inverse modeling scenarios.

In the current study, we assume that the prior information of the GRF is known and that FNO only learns from
data generated from the GRF. However, it has been shown that neural operators can learn the mapping from the
GRF of different structural parameters to the corresponding Darcy flow solution (Lu et al., 2021, 2022). This type
of neural operator learning requires neural networks with different architectures and training strategies, which are

Table 4
Inversion Metrics for Random Fields With Different Variances

σ2lnT Nh Accuracy (%) ϵT (%)

ϵh (%)

p1 p2 p3 p4 p5

0.25 16 91.24 15.65 5.06 4.67 2.76 3.91 3.69

36 98.89 8.65 4.24 2.57 1.92 2.91 3.15

64 97.27 12.96 1.99 2.29 1.85 2.73 2.32

1.0 16 82.13 28.33 9.29 11.40 5.80 13.55 9.53

36 93.42 21.39 5.08 4.08 3.55 8.40 3.55

64 92.68 30.94 5.60 3.00 3.35 4.79 2.75

2.0 16 78.55 47.79 8.94 8.85 6.14 8.85 7.22

36 90.06 43.59 6.61 8.49 4.88 4.79 6.67

64 87.71 47.83 5.33 8.66 4.68 4.90 8.19

4.0 16 63.44 73.30 11.92 11.33 15.03 10.68 16.10

36 86.24 44.82 11.04 7.35 5.78 9.49 7.83

64 87.07 35.77 6.31 13.45 6.34 5.88 9.09

8.0 16 46.31 97.94 16.52 16.51 18.80 33.72 17.65

36 80.89 58.40 9.49 9.61 7.77 19.26 8.89

64 81.65 69.53 10.62 8.28 8.03 8.04 7.56
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beyond the scope of this study. In the future, we will expand the use of FNO as a surrogate forward model by
combining it with generative deep learning models, such as variational auto‐encoders (VAE) and generative
adversarial networks (GAN) for inverse modeling of HT in non‐Gaussian, complex random fields. The efficiency
of FNO can also be beneficial for experimental design of monitoring wells given fixed pumping wells, which
often requires a large number of forward simulations. Furthermore, we will explore the feasibility of using FNO to
directly learn the solution operator for the inverse problem. Although the potential of FNO as an inverse operator
has been demonstrated with structured, full‐map inputs and outputs, we aim to extend its application to predictive
tasks with unstructured and sparse measurements. We are optimistic that FNO, along with other neural operator
models, may play an important role in groundwater modeling.

Data Availability Statement
Data sets, computational notebooks, and saved models that support the findings of this study are available at
(Guo, 2023). Open source software includes Fourier neural operator (Kovachki et al., 2021; Li et al., 2021b) and
PyTorch (Paszke et al., 2019).
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