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Presentation Notes
Hello, everyone, my name is Quan Guo, I am a forth year PhD in Dr. Luo’s group. My research focus on groundwater inverse modeling. And today, I am very hornored to introduce my work about apply physics-informed neural network on groundwater inverse modeling.
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Note: HT-PINN abbreviates Hydraulic Tomography-Physics Informed Neural Network

Presenter Notes
Presentation Notes
This is the outline of my presentation, let’s start with the first section: introduction and motivation of my research



Introduction & Motivation
Groundwater

Groundwater (GW) plays an important role in natural water cycle.

Porous media Water table

Presenter Notes
Presentation Notes
Groundwater is important in natural water cycle and regional contaminant control. In many disciplines, including hydrology, ecology, agriculture, etcetera, we usually use groundwater flow simulation to solve for water table in porous media underneath. 



Introduction & Motivation
GW flow simulation

forward
problem

GW flow simulation (GWFS) solves for hydraulic heads with:
• Governing equations
• Initial & boundary conditions
• Hydrogeological parameters

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −𝛻𝛻 � 𝐪𝐪 + 𝑄𝑄 Mass conservation 
𝐪𝐪 = 𝑇𝑇𝛻𝛻ℎ Darcy’s Law

𝑆𝑆𝑠𝑠 − specific storage; 𝑇𝑇 − hydraulic transmissivity
ℎ − hydraulic head; 𝐪𝐪 − flux; 𝑄𝑄 − source/sink

Forward problem is solving parameterized PDEs,
Forward model is numerical method, e.g., finite element 
method (FEM)

Field dimension:    𝑛𝑛
Complexity:           𝑄𝑄(𝑛𝑛2)

Presenter Notes
Presentation Notes
This is known as forward problem in groundwater. It requires us to know governing equations, conditions, and hydrogeological parameters such as transmissivity, then, it equals to solve a parameterized PDE of hydraulic heads. We can use numerical method like FEM to obtain the solution, the FEM solver can be regarded forward model. The tricky part is that.



Introduction & Motivation
GW inverse problem

inverse
problem

Characteristics of hydrogeological parameters:
• Large-dimensional – 106 unknowns
• Spatially distributed – geostatistics
• Expensive to measure at field sites

During iteration, FEM solver is run many times to 
determine Jacobian matrix

Field dimension:    𝑛𝑛
Complexity:           𝑄𝑄(𝑛𝑛3)

Solve with gradient-based iterative method
and regularization.

Inverse problem is estimating parameters in PDEs,

• non-linear without analytical solution
• ill-posed with infinite solutions

Presenter Notes
Presentation Notes
Hydrogeological parameters (transmissivity) is hard to be fully known. Because it is very large-dimensional and spatially distributed. And It is expensive to collect direct measurements of them in practical. So its characterization become an inverse problem. Inverse problem is usually ill-posed and non-linear, we need to implement gradient-based iterative method and regularization to solve, during this process, we have to iteratively run the forward model and in the worst case, the complexity is about cube to the dimension of the number of hydrogeological parameters.



Introduction & Motivation
Surrogate model

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −𝛻𝛻 � 𝐪𝐪 + 𝑄𝑄
𝐪𝐪 = 𝑇𝑇𝛻𝛻ℎ

𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥∗,𝑦𝑦∗ = 𝑇𝑇∗
𝑁𝑁𝑁𝑁 𝑥𝑥∗,𝑦𝑦∗ = ℎ∗ ℒ 𝑇𝑇∗, ℎ∗; 𝑥𝑥∗,𝑦𝑦∗

ℒ 𝑇𝑇∗, ℎ∗; 𝑥𝑥∗,𝑦𝑦∗ = 𝜙𝜙𝑛𝑛 𝑇𝑇∗, ℎ∗,
𝜕𝜕𝑇𝑇∗

𝜕𝜕𝑥𝑥∗ ,
𝜕𝜕𝑇𝑇∗

𝜕𝜕𝑦𝑦∗ ,
𝜕𝜕ℎ∗

𝜕𝜕𝑥𝑥∗ ,
𝜕𝜕ℎ∗

𝜕𝜕𝑦𝑦∗ ,
𝜕𝜕2𝑇𝑇∗

𝜕𝜕𝑥𝑥∗2
, … ,

𝜕𝜕𝑛𝑛ℎ∗

𝜕𝜕𝑦𝑦∗𝑛𝑛 = 0

minimize

𝑇𝑇 𝑥𝑥∗,𝑦𝑦∗ , ℎ 𝑥𝑥∗,𝑦𝑦∗
governsMass conservation

Darcy’s Law

PDE residual:

PDE constraints:

Presenter Notes
Presentation Notes
To avoid the complicated implementation, we want to find efficient surrogate models for solving the PDE. The idea is that use neural networks to predict the target variables in the PDE. In this case, h is hydraulic heads which are targets of forward problem, and T is transmissivity which is target of inverse problem. The PDE constraints are from physical laws and we formulate it as PDE residual. The prediction from neural networks should match known values and minimize the PDE residuals. 



Background
Regression of ill conditions

x

y
𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐

𝑦𝑦 = 𝑓𝑓 𝑥𝑥;𝛉𝛉

Data: 
𝑦𝑦1 = 𝑓𝑓 𝑥𝑥1 ≈ 𝑎𝑎𝑥𝑥12 + 𝑏𝑏𝑥𝑥1 + 𝑐𝑐
𝑦𝑦2 = 𝑓𝑓 𝑥𝑥2 ≈ 𝑎𝑎𝑥𝑥22 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐

Assumption: 𝑓𝑓 is second order polynomial with 
three degrees of freedom, 𝛉𝛉 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, i.e., 

𝑦𝑦 1
𝑦𝑦 2

𝑥𝑥2𝑥𝑥1

Problem is ill-posed, infinite solutions!

Presenter Notes
Presentation Notes
This is the simplest example to illustrate the idea. We have we function y equals to f(x) to fit. We assume the f is a second order polynomial function with three degrees of freedom, then, the tunable coefficients theta has 3 dimensions. We have some data, for example, 2 data, but not enough, so, the ill-posed regression problem gives us infinite solutions.



Background
Regularization on derivatives

x

y

𝑦𝑦 = 𝑓𝑓 𝑥𝑥;𝛉𝛉

Regularization: 
𝜕𝜕𝑦𝑦3
𝜕𝜕𝑥𝑥3

= 𝑓𝑓′ 𝑥𝑥3 ≈ 2𝑎𝑎𝑥𝑥32 + 𝑏𝑏

𝑦𝑦 1
𝑦𝑦 2

𝑥𝑥2𝑥𝑥1

𝜕𝜕𝑦𝑦3
𝜕𝜕𝑥𝑥3

Ideally, resulting in unique optimal solution

𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐

Data: 
𝑦𝑦1 = 𝑓𝑓 𝑥𝑥1 ≈ 𝑎𝑎𝑥𝑥12 + 𝑏𝑏𝑥𝑥1 + 𝑐𝑐
𝑦𝑦2 = 𝑓𝑓 𝑥𝑥2 ≈ 𝑎𝑎𝑥𝑥22 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐

Assumption: 𝑓𝑓 is second order polynomial with 
three degree of freedom, 𝛉𝛉 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, i.e., 

Presenter Notes
Presentation Notes
Somehow, we cannot get more data of y, but, we find the first order derivative of y at a point. We use this information to regularize the derivable function form, and obtain the optimal solution. All you need to do the force the first derivative of the function to be the known value.



HT-PINN for GW Modeling
Physical constraints in groundwater

PLAN View

Pumping test on a confined, isotropic, heterogeneous aquifer 
(2D domain):

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ 𝑥𝑥𝑒𝑒,𝑦𝑦𝑒𝑒,𝑡𝑡𝑒𝑒

𝜕𝜕𝜕𝜕
− 𝛻𝛻 � 𝑇𝑇 𝑥𝑥𝑒𝑒 , 𝑦𝑦𝑒𝑒 𝛻𝛻ℎ 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑡𝑡𝑒𝑒 = 0,

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝,𝑡𝑡𝑝𝑝

𝜕𝜕𝜕𝜕
− 𝛻𝛻 � 𝑇𝑇 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝 𝛻𝛻ℎ 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑡𝑡𝑝𝑝 = 𝑄𝑄𝑝𝑝,

𝐧𝐧 � 𝛻𝛻ℎ 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁, 𝑡𝑡𝑁𝑁 = 𝑞𝑞𝑁𝑁,

ℎ 𝑥𝑥𝐷𝐷,𝑦𝑦𝐷𝐷 , 𝑡𝑡𝐷𝐷 = ℎ𝐷𝐷 ,

ℎ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 0 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,

PDE for non-pumping grid

PDE for pumping grid

Neumann Boundary Condition
Dirichlet Boundary Condition
Initial Condition

𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 ∈ 𝛺𝛺, 𝑡𝑡𝑒𝑒 ∈ 0, T

(𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝) ∈ 𝛺𝛺, 𝑡𝑡𝑝𝑝 ∈ 0, T

𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁 ∈ 𝛤𝛤𝑁𝑁, 𝑡𝑡𝑁𝑁 ∈ (0, T]

𝑥𝑥𝐷𝐷,𝑦𝑦𝐷𝐷 ∈ 𝛤𝛤𝐷𝐷, 𝑡𝑡𝐷𝐷 ∈ 0, T

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝛺𝛺

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −𝛻𝛻 � 𝐪𝐪 + 𝑄𝑄 Mass conservation 
𝐪𝐪 = 𝑇𝑇𝛻𝛻ℎ Darcy’s Law
𝑆𝑆𝑠𝑠 − specific storage; 𝑇𝑇 − hydraulic transmissivity
ℎ − hydraulic head; 𝐪𝐪 − flux; 𝑄𝑄 − source/sink

Presenter Notes
Presentation Notes
With this idea, we set an experiment for 2D case, the resolution is 1024 times 1024 resulting in over 1 million unknowns. The top and bottom boundaries are Neumann boundaries which are impermeable. The left and right boundaries are Dirichlet boundaries with hydraulic heads equal to zero. The initial hydraulic head of the entire domain is also zero. We conduct pumping test at a well. As a result, we obtain the PDE constraints and BC constraints as this PDE system.



HT-PINN for GW Modeling
Transient Forward & Inverse Networks

Network Architecture

Transient Forward Inverse

Input variables Spatial & temporal 
(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

Spatial (𝑥𝑥, 𝑦𝑦)

Output variables Hydraulic heads (ℎ) Transmissivity (𝑇𝑇)

Number of layers 7

Hidden dimensions 50

Activation function Hyperbolic (tanh)

Output layer type Linear

ℎ 𝑥𝑥,𝑦𝑦, 𝑡𝑡 ≈ 𝑁𝑁𝑁𝑁 𝑥𝑥,𝑦𝑦, 𝑡𝑡
𝑇𝑇 𝑥𝑥,𝑦𝑦 ≈ 𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥, 𝑦𝑦

Data (reference): 
Monitored hydraulic heads: 𝑁𝑁𝑁𝑁 𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚 = ℎ𝑚𝑚
Measurements of transmissivity:  𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑇𝑇 ,𝑦𝑦𝑇𝑇 = 𝑇𝑇 𝑥𝑥𝑇𝑇 ,𝑦𝑦𝑇𝑇

𝑆𝑆𝑠𝑠
𝜕𝜕𝑁𝑁𝑁𝑁 𝑥𝑥𝑒𝑒,𝑦𝑦𝑒𝑒,𝑡𝑡𝑒𝑒

𝜕𝜕𝜕𝜕
− 𝛻𝛻 � [𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 𝛻𝛻𝑁𝑁𝑁𝑁 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑡𝑡𝑒𝑒 ] = 0

𝑆𝑆𝑠𝑠
𝜕𝜕𝑁𝑁𝑁𝑁 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝,𝑡𝑡𝑝𝑝

𝜕𝜕𝜕𝜕
− 𝛻𝛻 � 𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝 𝛻𝛻𝑁𝑁𝑁𝑁 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑡𝑡𝑝𝑝 = 𝑄𝑄𝑝𝑝

𝐧𝐧 � 𝛻𝛻𝑁𝑁𝑁𝑁 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁 , 𝑡𝑡𝑁𝑁 = 𝑞𝑞𝑁𝑁
𝑁𝑁𝑁𝑁 𝑥𝑥𝐷𝐷,𝑦𝑦𝐷𝐷 , 𝑡𝑡𝐷𝐷 = ℎ𝐷𝐷
𝑁𝑁𝑁𝑁 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 0 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Assumption:

Regularization (collocation):

Presenter Notes
Presentation Notes
Then, we develop neural networks to solve the forward and inverse problem under the constraints. The transient forward neural network NN is used to solve the transient forward problem. It takes spatial coordinates (x,y) and time index t as input and predict hydraulic head h at the location and time step as output. The inverse neural network TNN. It takes spatial coordinates (x,y) as input and predict transmissivity at the location as output. Both networks have 7 hidden layers and 50 hidden variables in each layer. The activation function is hyperbolic. The output layer is linear. We have some monitored hydraulic heads and measured transmissivity as data and the PDE constraints as regularization. In deep learning, they are also called reference and collocation data.



HT-PINN for GW Modeling
Batch Training

Batch training based on collocation data:
• One batch has 300 randomly selected non-pumping grids
• One time step has 10 batches of data, transient has 10 times steps
• 5 pumping tests in HT

Number and property of different grids in each batch of training data for HT-PINN

Type of points Pumping Time Batch Number

Pumping 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝 Invariant Invariant Invariant 1

Neumann 𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁 Invariant Invariant Invariant 64 × 2

Dirichlet 𝑥𝑥𝐷𝐷,𝑦𝑦𝐷𝐷 Invariant Invariant Invariant 64 × 2

Direct 𝑥𝑥𝑇𝑇 ,𝑦𝑦𝑇𝑇 Invariant Invariant Invariant 61

Initial 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Variant Invariant Invariant 25

Monitored 𝑥𝑥𝑚𝑚, 𝑦𝑦𝑚𝑚, 𝑡𝑡𝑚𝑚 Variant Variant Invariant 24

Non-pumping 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑡𝑡𝑒𝑒 Variant Variant Variant 300

Total data: 667

Data Batch
Non-pumping 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑡𝑡𝑒𝑒 , ℎ𝑒𝑒
Pumping (𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝), 𝑄𝑄𝑝𝑝
Neumann        𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁 , 0
Dirichlet         𝑥𝑥𝐷𝐷, 𝑦𝑦𝐷𝐷 , ℎ𝐷𝐷
Direct             𝑥𝑥𝑇𝑇 ,𝑦𝑦𝑇𝑇 , 𝑇𝑇
Initial              𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
Monitored      𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚, 𝑡𝑡𝑚𝑚 , ℎ𝑚𝑚

Training data for HT-PINN include:
• Reference data: direct/indirect measurements
• Collocation data: pumping/non-pumping, B.C., I.C.

Presenter Notes
Presentation Notes
In our case, there are 25 wells located in domain and five pumping tests are conducted. In each pumping test, water is withdrawn from a well and hydraulic heads are monitored from the other 24 wells. So, at each time step in a pumping test, there are 24 monitored value called indirect measurement. The reference data also include direct measurements of transmissivity, there are 61 direct measurements, which are uniformly distributed on domain.
For collocation data, Neumann boundary has 64 grids on each of the top and bottom boundary. Dirichlet boundary also have 64 grids on each of the left and right boundary. The initial condition is applied at the 25 wells including pumping and non-pumping wells. And PDE for pumping grid is applied at the unique pumping well.
For non-pumping grids, technically, all grids in domain except for the one pumping grid should be collocated. The number is over 1 million. Clearly, train HT-PINN with 1 million grids is impossible. So, we implement batch training techniques. We randomly select 300 non-pumping grids from the domain. They together with other data we mentioned form a batch of training data. And at each time step in a pumping test, we collect 10 batch of data. Transient HT-PINN has10 time steps for each pumping test. So, totally, we have 500 batches of data for 5 pumping tests. They will be used to train HT-PINN for one epoch. But in steady state HT-PINN, we only have 50 batches for 5 pumping tests which is just one tenth of the data in transient case. 



HT-PINN for GW Modeling
PINN for Transient Pumping Test

Presenter Notes
Presentation Notes
Next, we joint NN and TNN together to form the PINN for transient pumping test. NN make predictions of hydraulic heads, they are used to evaluate loss terms of Dirichlet condition, initial condition and data match of monitored hydraulic heads. Then, its first order derivative is approximated with automatic differentiation called, AD and some of them are used to evaluate loss of Neumann condition. Next the second order spatial derivatives are approximated with AD. The prediction from TNN is used to evaluate loss of data match of measured transmissivity and its first order derivative is approximated with AD. The predicted transmissivity and its first order derivative, the first order and second order derivatives of hydraulic heads, they are jointly used to evaluate loss term of PDE constraints on pumping and non-pumping grid. Total loss is weighted sum of all these loss terms and backpropagation is used to tune coefficients in NN and TNN. This is a single pumping test.



HT-PINN for GW Modeling
HT-PINN Composition

Only one inverse network 𝑇𝑇𝑁𝑁𝑁𝑁 in HT.

Each pumping test has a forward network 𝑁𝑁𝑁𝑁𝑖𝑖 (labeled by pumping well).

𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁𝑁𝑁1 𝑁𝑁𝑁𝑁5

p1

𝑁𝑁𝑁𝑁13

p5Pumping well = p13 p21 p25

𝑁𝑁𝑁𝑁21 𝑁𝑁𝑁𝑁25

Presenter Notes
Presentation Notes
In hydraulic tomography, or HT, pumping tests are sequentially conducted as different wells. Each pumping tests is a different forward problem, the solution is also different. We can see these figures, they show the hydraulic heads of pumping test at different locations. So, we develop an independent forward network for each pumping test. For example, in HT with 5 pumping tests, we use NN1 for pumping test at well p1, and NN 5 for pumping test at p5, until the p25. Meanwhile, we have one inverse network for estimating transmissivity. So, we totally have 6 networks for simulating HT of 5 pumping tests. 



HT-PINN for GW Modeling
HT-PINN flowchart

Losses from each pumping test are summed:

Total Loss of HT-PINN:
ℓHT−PINN = ∑ℓ𝑁𝑁𝑁𝑁𝑖𝑖 + ℓ𝑇𝑇𝑇𝑇𝑇𝑇

Best estimate:
�𝛉𝛉 = arg min

𝛉𝛉
(∑ℓ𝑁𝑁𝑁𝑁𝑖𝑖 + ℓ𝑇𝑇𝑇𝑇𝑇𝑇)

Presenter Notes
Presentation Notes
We connect 6 networks together to form a HT-PINN. The losses from each pumping test are summed together .So we can train all 6 networks simultanesously.



Result
Transient Forward Results

Average relative residual 𝜖𝜖𝑁𝑁𝑁𝑁𝑡𝑡𝑖𝑖 average on all time steps 𝑡𝑡 = 0.1 − 1.0

• P1:   6.14%
• P5:   6.26%
• P13: 6.23%
• P21: 6.58%
• P25: 6.53%

Presenter Notes
Presentation Notes
Here is the result of forward model in transient HT-PINN. The right top figure plot hydraulic heads along time in pumping test p1. Each color represents a monitoring well. Stars are reference data h1 and solid lines are predicted value from NN1. They match very well at all locations. And at time step zero, the predicted hydraulic head is also zero which match the initial condition setup. The right bottom figure has reference data verses predicted values of all 5 pumping tests. Besides, we plot true and predicted hydraulic heads and contour lines of the entire domain at every time step. They match very well. Predictions of other pumping tests are not plot in figures but we can see the metrics that relative residuals of all forward networks are around 6%, which means make as good approximations.



Result
Transient Inverse Results

The relative residual 𝜖𝜖𝑇𝑇𝑇𝑇𝑇𝑇 is 10.32%, and the accuracy is 94.93%. 

Training time is about 9.5 hours.

Presenter Notes
Presentation Notes
Here is the transient inverse network. (A) is true field and (B) estimation from TNN, (C) is the true value verses estimation. We can see that TNN captures most patterns in the true field. The relative residual is around 10% and inverse accuracy is over 94%, which tells that the estimation is very accurate. The training time of transient HT-PINN is around 9 and a half hours.



Model Investigation
Model Scalability

Model RGA HT-PINN
Accuracy > 90% > 90%
𝑵𝑵𝒉𝒉 24×5 24×5
𝑵𝑵𝒍𝒍𝒍𝒍𝒍𝒍 0 61
Covariance Yes No
Scalability Linear Constant

Presenter Notes
Presentation Notes
We  investigate model scalability through applying HT-PINN on field with different resolutions. The performance is compared with gradient-based RGA . Right figure shows true field and estimations from two models, both models make good estimations. The resolution is from 64*64 to 1024*1024 and the accuracy is over 90% in all cases. The run time of RGA is linearly increasing with field resolution. However, the runtime of HT-PINN maintains the same since we keep the amount of training data and the number of training epoch the same for different resolutions. With comparison, we can find that HT-PINN is more efficient for large-dimensional inverse problem.



Discussion
Model Comparison & Future Work

Model HT-PINN GA Inverse model
Type Pointwise approximator Gradient-based approach
Regularization Physical constraints (PDE) Geostatistical assumption
Pros Scalable Do not require direct measurements
Cons Require direct measurements Not scalable due to matrix computation

Suitable for inferring high-resolution, smooth field with direct measurements available.

1. Reduce the required data of HT-PINN through incorporating other constraints such as geostatistics.
2. Generalize HT-PINN model for inverse modeling of non-Gaussian fields.

Current state:

In future:

Presenter Notes
Presentation Notes
This is the comparison of HT-PINN and GA model. The advantage of HT-PINN is that it is more scalable because it is a pointwise approximator and does not take matrix computation. The disadvantage of HT-PINN is that it requires direct measurements of transmissivity, however, GA does not need this data because it has geostatistical assumptions.



Q & A

Many Thanks!

Appreciate any questions

Presenter Notes
Presentation Notes
This is my presentation today. Thanks very much for listening. And I am happy to answer any questions now.
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Appendix
Experimental Domain

Hydrogeological and geostatistical parameters for the
hydraulic tomography experiment
Parameter Values
Domain size, 𝐿𝐿𝑥𝑥 × 𝐿𝐿𝑦𝑦 320m × 320m
Grid spacing, 𝛥𝛥𝛥𝛥 × 𝛥𝛥𝛥𝛥 0.3125m × 0.3125m
Spatial resolution, 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦 1024 × 1024
Transmissivity, 𝑇𝑇 [m2/hr]

Geometric mean 0
Variance of ln𝑇𝑇, 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 1
Correlation length, 𝜆𝜆𝑥𝑥 × 𝜆𝜆𝑦𝑦 64m × 48m

Left Boundary h=0m
Right Boundary h=0m
Initial Condition h=0m
Pumping Time [hr] 1
Monitor Time Step [hr] 0.1
Pumping Rate [m3/hr] 3.6

Presenter Notes
Presentation Notes
Those are the models we develop, and we test the model in numerical experiments. These are the experimental domain. The transmissivity field is a realization generated from known Gaussian process. The resolution is 1024 times 1024 resulting in over 1 million unknowns. The top and bottom boundaries are Neumann boundaries which are impermeable. The left and right boundaries are Dirichlet boundaries with hydraulic heads equal to zero. The initial hydraulic head of the entire domain is also zero. There are 25 wells located in domain and five pumping tests are conducted. In each pumping test, water is withdrawn from a well and hydraulic heads are monitored from the other 24 wells. The reference data of hydraulic heads are solved with finite element method.



Appendix
Deep Neural Network

𝐡𝐡1 = 𝑓𝑓0 𝐱𝐱 = 𝜎𝜎0 𝐖𝐖0𝐱𝐱 + 𝐛𝐛0
𝐡𝐡2 = 𝑓𝑓1 𝐡𝐡1 = 𝜎𝜎1 𝐖𝐖1𝐡𝐡1 + 𝐛𝐛1
……
𝐡𝐡𝑛𝑛 = 𝑓𝑓𝑛𝑛−1 𝐡𝐡𝑛𝑛−1 = 𝜎𝜎𝑛𝑛−1 𝐖𝐖𝑛𝑛−1𝐡𝐡𝑛𝑛−1 + 𝐛𝐛𝑛𝑛−1
𝐲𝐲 = 𝑓𝑓1 𝐡𝐡𝑛𝑛 = 𝜎𝜎𝑛𝑛 𝐖𝐖𝑛𝑛𝐡𝐡𝑛𝑛 + 𝐛𝐛𝑛𝑛

↓
𝐲𝐲 = 𝑓𝑓𝑛𝑛 𝑓𝑓𝑛𝑛−1 (…𝑓𝑓1(𝑓𝑓0(𝐱𝐱))

σ𝑖𝑖(�) is chosen activation function;
𝐖𝐖𝑖𝑖 is learnable weight matrix;
𝐛𝐛𝑖𝑖 is learnable bias vector.

𝐱𝐱 is input variable vector; 𝐡𝐡𝑖𝑖 is hidden feature vector; 𝐲𝐲 is output variable vector 

Deep neural network (DNN) is a typical Machine Learning (ML) or Deep Learning (DL) model

Presenter Notes
Presentation Notes
Before explaining my model, I want to introduce some background about PINN. PINN usually has a structure of fully connected deep neural network, here we shortly call it DNN. It is a complicated function based on repeated layers. Each layer is composed of linear transformation and activation function. The activation function is usually nonlinear and differentiable. From beginning, the input variable X enters the input layer, which is represented by function f0, it goes through a linear transformation and a nonlinear activation function and give us the first hidden variable h1. Then, h1 enters the first hidden layer, which is represented by function f1, and after linear transformation and activation function, it gives us hidden variable h2. It keeps going forward until the last hidden variable hn enters the output layer and give us the output variable y. The process from x to y is the forward propagation. The weight matrix W and bias b vector in each layer are known as the coefficients of the network and they are learnable.



Appendix
DNN Training

DNN is purely data-driven, loss function is based on data match: ℓ 𝐲𝐲, �𝐲𝐲

Best estimate:
�𝛉𝛉 = arg min

𝛉𝛉
ℓ

= arg min
𝛉𝛉

ℓMSE 𝐹𝐹 𝐱𝐱𝑝𝑝;𝛉𝛉 , �𝐲𝐲

Loss function (Mean Squared Error):

ℓ = ℓMSE 𝐲𝐲, �𝐲𝐲 =
1

𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
�
𝑝𝑝=1

𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�𝐲𝐲𝑝𝑝 − 𝐲𝐲𝑝𝑝

Learnable coefficients:
𝛉𝛉 = {𝐖𝐖0,𝐖𝐖1, … ,𝐖𝐖𝑛𝑛;𝐛𝐛2,𝐛𝐛1, … ,𝐛𝐛𝑖𝑖}

Presenter Notes
Presentation Notes
We note the learnable coefficients as theta. Training DNN is actually learn the best estimate of theta. The learning process is like fitting a regression model, since DNN is also data-driven, we define a loss function to evaluate the difference between reference data and model prediction. 



Appendix
Backpropagagtion

← 𝐲𝐲 = 𝑓𝑓𝑛𝑛 𝑓𝑓𝑛𝑛−1 (… 𝑓𝑓1(𝑓𝑓0(𝒙𝒙)) = 𝐹𝐹 𝐱𝐱;𝛉𝛉
Automatic

Differentiation
(AD)

Gradient w.r.t. 𝛉𝛉𝑖𝑖 through chain rule:

Minimize ℓ through tuning 𝛉𝛉𝑖𝑖 :
𝛉𝛉𝑖𝑖𝑘𝑘+1 = 𝛉𝛉𝑖𝑖𝑘𝑘 + 𝜂𝜂

𝜕𝜕ℓ
𝜕𝜕𝛉𝛉𝑖𝑖𝑘𝑘

𝜕𝜕ℓ
𝜕𝜕𝛉𝛉𝒊𝒊

= 𝜕𝜕ℓ
𝜕𝜕𝐲𝐲

𝜕𝜕𝐲𝐲
𝜕𝜕𝛉𝛉𝒊𝒊

= 𝜕𝜕ℓ
𝜕𝜕𝐲𝐲

𝜕𝜕𝐲𝐲
𝜕𝜕𝐡𝐡𝑛𝑛

𝜕𝜕𝐡𝐡𝑛𝑛
𝜕𝜕𝐡𝐡𝑛𝑛−1

… 𝜕𝜕𝐡𝐡𝑖𝑖
𝜕𝜕𝛉𝛉𝒊𝒊

= 𝑔𝑔′𝑓𝑓𝑛𝑛′𝑓𝑓𝑛𝑛−1′ …𝑓𝑓𝑖𝑖′

= 𝑔𝑔′𝐹𝐹𝛉𝛉𝑖𝑖 𝐱𝐱;𝛉𝛉

← chain rule

← abbreviation

Closed-form function:
𝐲𝐲𝑝𝑝 = 𝑓𝑓𝑛𝑛 𝑓𝑓𝑛𝑛−1 (…𝑓𝑓1(𝑓𝑓0(𝐱𝐱)) = 𝐹𝐹 𝐱𝐱𝑝𝑝;𝛉𝛉

Presenter Notes
Presentation Notes
Then, we can minimize the loss function through iteratively tuning theta. To do so, we need to know the gradient of loss term with respect to theta. We can do it with backpropagation, as we mentioned, output variable y is a layered function of input x and theta. Each layer is a differentiable function. So, we can use chain rule to backpropagate the gradient. At first, we find the gradient of loss to y, then, we find the gradient of y to last hidden variable hn, then, hn to h n-1, and keeps going back until the layers we want, in that layer, we find the gradient of hi to coefficient theta i. And multiply them together to get gradient of loss to theta i. In modern deep learning softwares, this is done by automatic differentiation (here we simply call it AD and it will be further used). 



Appendix
Overfitting

dim(𝛉𝛉) ≫ 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

In groundwater inverse problem, data is limited!

dim(𝛉𝛉) ≪ 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 dim(𝛉𝛉) ≈ 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Presenter Notes
Presentation Notes
So, directly use DNN for inverse modeling will cause overfitting.



Appendix
Steady-State Forward Network

Steady-state pumping test only monitors hydraulic heads at steady state (time invariant).

Steady-state Forward Network Architecture

Input variables Spatial (𝑥𝑥, 𝑦𝑦)
Output variables Steady-state hydraulic heads (ℎ)
Number of hidden layers 7
Dimension of hidden variables 50
Hidden layer activation function Hyperbolic (tanh)
Output layer type Linear

𝑁𝑁𝑁𝑁 has no input time variables

Presenter Notes
Presentation Notes
Beside transient pumping tests, we also have steady state pumping test. It only measures hydraulic heads at steady state, the value is time invariant. So forward network in steady state HT-PINN only takes spatial coordinate as input and predict steady state hydraulic head at the location as output. The network structure is same as mentioned networks.



Appendix
Loss of Steady-State PINN

𝛻𝛻 � 𝑇𝑇 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 𝛻𝛻𝛻 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 = 0,

𝛻𝛻 � 𝑇𝑇 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝 𝛻𝛻𝛻 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝 = 𝑄𝑄𝑝𝑝,

𝐧𝐧 � 𝛻𝛻𝛻 𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁 = 𝑞𝑞𝑁𝑁 ,

ℎ 𝑥𝑥𝐷𝐷, 𝑦𝑦𝐷𝐷 = ℎ𝐷𝐷,

𝛻𝛻 � [𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 𝛻𝛻𝑁𝑁𝑁𝑁 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 ] = 0, 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 ∈ 𝛺𝛺

𝛻𝛻 � 𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝 𝛻𝛻𝑁𝑁𝑁𝑁 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝 = 𝑄𝑄𝑝𝑝, (𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝) ∈ 𝛺𝛺

𝐧𝐧 � 𝛻𝛻𝑁𝑁𝑁𝑁 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁 = 𝑞𝑞𝑁𝑁 , 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁 ∈ 𝛤𝛤𝑁𝑁
𝑁𝑁𝑁𝑁 𝑥𝑥𝐷𝐷 ,𝑦𝑦𝐷𝐷 = ℎ𝐷𝐷 , 𝑥𝑥𝐷𝐷 ,𝑦𝑦𝐷𝐷 ∈ 𝛤𝛤𝐷𝐷

PDE for non-pumping grid

PDE for pumping grid

Neumann Boundary Condition

Dirichlet Boundary Condition

• Hydraulic heads are only monitored at steady state (no intermediate time step)
• No constraints of initial condition
• No temporal gradients in PDE constraints for pumping and non-pumping grids

Steady-state HT-PINN is more efficient because of smaller training data and fewer and simpler constraints.

Monitored hydraulic heads:  𝑁𝑁𝑁𝑁 𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚 = ℎ𝑚𝑚
Measurements of transmissivity:  𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑇𝑇 ,𝑦𝑦𝑇𝑇 = 𝑇𝑇 𝑥𝑥𝑇𝑇 ,𝑦𝑦𝑇𝑇

Presenter Notes
Presentation Notes
For loss function of steady state PINN, the size of training data is smaller because hydraulic heads are only monitored at steady state instead of multiple time steps. The initial condition is not considered. The PDE constraints of pumping and non-pumping grids are more concise because the temporal gradient is removed. As a result, the steady state HT-PINN has fewer and simpler physical constraints.



Appendix
Steady-State PINN

Presenter Notes
Presentation Notes
This is the steady state PINN look like. It is similar to transient PINN. The only differences are that the number of loss terms and AD operations are reduced. So, the steady state network can be trained more efficiently.



Appendix
PDE Loss Terms

Physical Constraints:
𝑆𝑆𝑠𝑠

𝜕𝜕ℎ 𝑥𝑥𝑒𝑒,𝑦𝑦𝑒𝑒,𝑡𝑡𝑒𝑒
𝜕𝜕𝜕𝜕

− 𝛻𝛻 � 𝑇𝑇 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 𝛻𝛻ℎ 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑡𝑡𝑒𝑒 = 0,
PDE residual:

𝑓𝑓𝑁𝑁𝑁𝑁𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥,𝑦𝑦, 𝑡𝑡 = 𝑆𝑆𝑠𝑠
𝜕𝜕𝑁𝑁𝑁𝑁𝑖𝑖 𝑥𝑥, 𝑦𝑦, 𝑡𝑡

𝜕𝜕𝜕𝜕
− ∇ � 𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥,𝑦𝑦 ∇𝑁𝑁𝑁𝑁𝑖𝑖 𝑥𝑥,𝑦𝑦, 𝑡𝑡 ,

PDE for non-pumping grid:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑒𝑒 =
1
𝑁𝑁𝑒𝑒

�
𝑗𝑗=1

𝑁𝑁𝑒𝑒
𝑓𝑓𝑁𝑁𝑁𝑁,𝑇𝑇𝑁𝑁𝑁𝑁 𝑥𝑥𝑒𝑒

𝑗𝑗 ,𝑦𝑦𝑒𝑒
𝑗𝑗 , 𝑡𝑡𝑒𝑒

𝑗𝑗 2

PDE for pumping grid:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝 =
1
𝑁𝑁𝑝𝑝

�
𝑗𝑗=1

𝑁𝑁𝑝𝑝
𝑓𝑓𝑁𝑁𝑁𝑁,𝑇𝑇𝑁𝑁𝑁𝑁 𝑥𝑥𝑝𝑝

𝑗𝑗 ,𝑦𝑦𝑝𝑝
𝑗𝑗 , 𝑡𝑡𝑝𝑝

𝑗𝑗 − 𝑄𝑄𝑝𝑝
2



Appendix
BC Loss Terms

Initial Condition:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
�
𝑗𝑗=1

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 0 − ℎ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 0 2

Neumann B.C.:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁 =
1
𝑁𝑁𝑁𝑁

�
𝑗𝑗=1

𝑁𝑁𝑁𝑁
𝒏𝒏 � ∇𝑁𝑁𝑁𝑁 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁, 𝑡𝑡𝑁𝑁 − 𝑞𝑞𝑁𝑁 2

Dirichlet B.C.:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐷𝐷 =
1
𝑁𝑁𝐷𝐷

�
𝑗𝑗=1

𝑁𝑁𝐷𝐷
𝑁𝑁𝑁𝑁 𝑥𝑥𝐷𝐷

𝑗𝑗 ,𝑦𝑦𝐷𝐷
𝑗𝑗 , 𝑡𝑡𝐷𝐷

𝑗𝑗 − ℎ 𝑥𝑥𝐷𝐷
𝑗𝑗 ,𝑦𝑦𝐷𝐷

𝑗𝑗 , 𝑡𝑡𝐷𝐷
𝑗𝑗 2



Appendix
Data Match Loss Terms

Monitored Hydraulic Heads:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑚𝑚 =
1
𝑁𝑁𝑚𝑚

�
𝑗𝑗=1

𝑁𝑁𝑚𝑚
𝑁𝑁𝑁𝑁 𝑥𝑥𝑚𝑚

𝑗𝑗 ,𝑦𝑦𝑚𝑚
𝑗𝑗 , 𝑡𝑡𝑚𝑚

𝑗𝑗 − ℎ 𝑥𝑥𝑚𝑚
𝑗𝑗 ,𝑦𝑦𝑚𝑚

𝑗𝑗 , 𝑡𝑡𝑚𝑚
𝑗𝑗 2

Measured Transmissivity:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑇𝑇 =
1
𝑁𝑁𝑇𝑇

�
𝑗𝑗=1

𝑁𝑁𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑇𝑇

𝑗𝑗 , 𝑦𝑦𝑇𝑇
𝑗𝑗 − 𝑇𝑇 𝑥𝑥𝑇𝑇

𝑗𝑗 ,𝑦𝑦𝑇𝑇
𝑗𝑗 2



Appendix
Loss Function of HT-PINN

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁𝑁𝑁 = 𝜆𝜆𝑚𝑚𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑚𝑚 + 𝜆𝜆𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑒𝑒 + 𝜆𝜆𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁 + 𝜆𝜆𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐷𝐷 + 𝜆𝜆𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐻𝐻𝐻𝐻−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �
𝑖𝑖=1,2,…𝑛𝑛

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖 + 𝜆𝜆𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑇𝑇

𝜆𝜆𝑚𝑚 = 104, 𝜆𝜆𝑓𝑓 = 50, 𝜆𝜆𝑝𝑝 = 1, 𝜆𝜆𝑁𝑁 = 104, 𝜆𝜆𝐷𝐷 = 2 × 104, 𝜆𝜆𝑇𝑇 = 103, 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 104



Appendix
Loss Function of steady state HT-PINN

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁𝑁𝑁 = 𝜆𝜆𝑚𝑚𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑚𝑚 + 𝜆𝜆𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑒𝑒 + 𝜆𝜆𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁 + 𝜆𝜆𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐷𝐷 + 𝜆𝜆𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐻𝐻𝐻𝐻−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �
𝑖𝑖=1,2,…𝑛𝑛

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖 + 𝜆𝜆𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑇𝑇

𝜆𝜆𝑚𝑚 = 104, 𝜆𝜆𝑓𝑓 = 50, 𝜆𝜆𝑝𝑝 = 1, 𝜆𝜆𝑁𝑁 = 104, 𝜆𝜆𝐷𝐷 = 2 × 104, 𝜆𝜆𝑇𝑇 = 103

Physical Constraints:
𝛻𝛻 � 𝑇𝑇 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 𝛻𝛻ℎ 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 = 0,

PDE residual:
𝑓𝑓𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥,𝑦𝑦 = ∇ � 𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥, 𝑦𝑦 ∇𝑁𝑁𝑁𝑁 𝑥𝑥,𝑦𝑦

PDE for non-pumping grid:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑒𝑒 =
1
𝑁𝑁𝑒𝑒

�
𝑗𝑗=1

𝑁𝑁𝑒𝑒
𝑓𝑓𝑁𝑁𝑁𝑁,𝑇𝑇𝑁𝑁𝑁𝑁 𝑥𝑥𝑒𝑒

𝑗𝑗 ,𝑦𝑦𝑒𝑒
𝑗𝑗 , 𝑡𝑡𝑒𝑒

𝑗𝑗 2
PDE for pumping grid:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝 =
1
𝑁𝑁𝑝𝑝

�
𝑗𝑗=1

𝑁𝑁𝑝𝑝
𝑓𝑓𝑁𝑁𝑁𝑁,𝑇𝑇𝑁𝑁𝑁𝑁 𝑥𝑥𝑝𝑝

𝑗𝑗 ,𝑦𝑦𝑝𝑝
𝑗𝑗 , 𝑡𝑡𝑝𝑝

𝑗𝑗 − 𝑄𝑄𝑝𝑝
2



Appendix
HT-PINN Training

• 5 forward networks + 1 inverse network are trained together.
• Reference data are corrupted with 5% white noises.
• Input and output variables are normalized.
• Different loss terms are weighted to similar magnitude.
• Each training iteration takes a batch of data to feed HT-PINN.
• Each epoch has 50 iterations for steady-state and 500 iterations for transient HT.
• HT-PINN is trained for 3000 epochs with Adam optimizer.
• Learning rate = 10-3 for 1-1000, 10-4 for 1000-2000, 10-5 for 2000-3000.
• Training hardwares are Google Colab GPU

Presenter Notes
Presentation Notes
Here are some details of HT-PINN training. Most important information is that Adam optimizer is used to train HT-PINN for 3000 epochs and the learning rate has a piecewise constant decay schedule.
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