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A B S T R A C T

A hydraulic tomography – physics informed neural network (HT-PINN) is developed for inverting two-
dimensional large-scale spatially distributed transmissivity. HT-PINN involves a neural network model of trans-
missivity and a series of neural network models to describe transient or steady-state sequential pumping tests. All
the neural network models are jointly trained by minimizing the total loss function including data fitting errors
and PDE constraints. Batch training of collocation points is used to amplify the advantage of the mesh-free prop-
erty of neural networks, thereby limiting the number of collocation points per training iteration and reducing the
total training time. The developed HT-PINN accurately and efficiently inverts two-dimensional Gaussian trans-
missivity fields with more than a million unknowns (1024 1024 resolution), and the inversion map accuracy
exceeds 95 %. The effects of batch sampling methods, batch number and size, and data requirements for direct
and indirect measurements are systematically investigated. In addition, the developed HT-PINN exhibits great
scalability and structure robustness in inverting fields with different resolutions ranging from coarse (64 64) to
fine (1024 1024). Specifically, data requirements do not increase with the problem dimensionality, and the
computational cost of HT-PINN remains almost unchanged due to its mesh-free nature while maintaining high in-
version accuracy when increasing the field resolution.

Nomenclature

AD Automatic Differentiation
GA Geostatistical Approach
HT Hydraulic Tomography
HT-PINN Hydraulic Tomography-Physics Informed Neural

Network
MSE Mean Squared Error
PINN Physics Informed Neural Network
RGA Reformulated Geostatistical Approach

SymbolsGeneral groundwater flow equation

Specific storage
Hydraulic head
Water accumulation/reduction rate in control volume
Specific discharge vector

Hydraulic transmissivity

Experimental domain

Two-dimensional (2D) spatial domain
Total observation time

/ Horizontal/vertical coordinate in 2D domain
Time (temporal coordinate)

Boundary and initial conditions (BC and IC)

Grids where initial condition is applied
Initial hydraulic head
Neumann boundary
Grids and time that Neuman BC is applied
Flux rate at Neumann boundary
Unit vector normal to Neumann BC
Grids and time that Dirichlet BC is applied
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Fig. 1. Flowchart of HT-PINN: (upper right) and (upper left) denote inverse and forward neural networks for hydraulic transmissivity and hydraulic head;
and denote predictions from neural networks; “AD” denotes automatic differentiation used to approximate partial derivatives; Orange rounds are operators;

Green rounds are loss terms; Dash line is the pathway used only by ; the solid is the pathway used by and ; Flow in two types of pathways will not con-
vey despite the intersection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Numerical experiment setup for the steady-state HT experiment. (A) the well network consists of 25 wells (p1-p25) with the pumping well, for example,
located at the right bottom corner (red dot) and monitoring wells (monitor) located at orange dots. Dirichlet (diri) boundary cells are denoted by blue squares,
and Neumann (neum) boundary cells are denoted by black squares. Relax region boundaries are denoted by the red line, cells outside this region but inside
boundaries are under PDE constraint; (B) the reference lnT field used in the pumping test simulation with direct measurements of transmissivity denoted by pur-
ple triangles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Hydraulic head at Dirichlet boundary

PDE constraint in pumping test

Non-pumping grids where pumping test is not con-
ducted
Pumping grids where pumping test is conducted
Pumping rate

Reference data

Grids where direct measurements of hydraulic trans-
missivity are measured
Grids where indirect measurements of hydraulic
heads are monitored

Neural Networks

Forward neural network for predicting hy-

draulic heads
Inverse neural network for estimating hydraulic
transmissivity
PDE residuals only related to forward network
PDE residuals related to both forward and inverse
networks
Loss term of PDE constraints of non-pumping
grids
Loss term of PDE constraints of pumping grids
Loss term of initial conditions
Loss term of Neumann BC
Loss term of Dirichlet BC
Loss term of data match of indirect measure-
ments
Loss term of data match of direct measurements
Total loss of forward problem
Total loss of inverse problem

/ Weight and number of grids used by
/ Weight and number of grids used by

/ Weight and number of grids used by
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Table 1
Hydrogeological and geostatistical parameters for the hydraulic tomography
experiment.
Parameter Values

Domain size,
Grid spacing,
Spatial resolution,
Transmissivity,
Geometric mean
Variance of ,
Correlation length,
Left Boundary h=
Right Boundary h=
Initial Condition h=
Pumping Rate

/ Weight and number of grids used by
/ Weight and number of grids used by
/ Weight and number of grids used by
/ Weight and number of grids used by

Evaluation Metrics

Relative residuals
Pointwise estimation error

1. Introduction

The cost of directly measuring spatially variable parameters like hy-
draulic conductivity or transmissivity in the field is prohibitive, leading

to inverse problems of estimating these parameters through indirect
measurements such as hydraulic heads or tracer concentrations. Hy-
draulic tomography (HT), also known as sequential pumping tests, has
demonstrated great potential for aquifer characterization with rela-
tively low cost and simple data collection techniques (Yeh and Liu,
2000). By alternatively switching pumping and monitoring wells in a
well network, HT can provide larger and more informative data than a
traditional single-well pumping test. The enhanced information density
reduces the non-uniqueness of potential inverse solutions for the un-
known parameter field like hydraulic conductivities.

A common and effective approach to solving HT inverse problems is
the gradient-based geostatistical approach (GA). GA formulates the pos-
terior distribution of target variables according to the likelihood of data
matching and the prior for the smoothness regularization under the
Bayesian framework (Kitanidis, 1995). The posteriori is maximized to
obtain the best linear estimate and associated uncertainty. The major
challenge faced by GA is its applicability when the dimension of the tar-
get variable is large for estimating a high-resolution parameter field.
The cost of computing and storing the associated full-rank covariance
matrix is very high, especially when using gradient-based methods such
as Newton’s method to evaluate the Jacobian matrix at each iteration
(Ambikasaran et al., 2013; Klein et al., 2017; Liu and Kitanidis, 2011;
Liu et al., 2013; Obiefuna and Eslamian, 2019). Many efforts have been
made to optimize GA for large-scale inverse problems from two aspects:
dimensionality reduction and efficient numerical methods. Dimension-
ality reduction encodes the original high-dimensional parameter field
as low-dimensional random parameters, and reformulates the computa-
tions on the original field to the random parameters so that the compu-
tations are more concise and efficient. For example, Gaussian random
fields can be encoded through combinations of independent projective
vectors and identified with about tens of independent and identically
distributed random variables. The combinations of independent projec-

Fig. 3. Comparison of model with the numerical simulation for the transient pumping test. (A) hydraulic head distribution in pumping test at well p1, the first
row shows from the numerical simulation at = 0.1–1.0 h, the second row shows prediction = 0.1–1.0 h; (B) reference water heads and pre-
dicted water heads at monitoring wells in pumping test p1, each color notes an unique monitoring well, stars note reference data, solid line note model prediction; (C)
reference water heads vs predicted water heads in pump tests at p1, p5, p13, p21 and p25.
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Fig. 4. Performance of for inverse modeling of transient hydraulic tomography. (A) reference field; (B) estimation from ; (C) true vs estimated lnT.

Fig. 5. Comparison of model with the numerical simulation for the pumping test at well p21. (A) numerical simulation of hydraulic head distribution; (B)
prediction; (C) reference water heads vs predicted water heads for all pumping tests.

tive vectors, which is usually referred as projection matrix, can be ob-
tained by principal component analysis (PCA) (Kitanidis and Lee, 2014;
Lee and Kitanidis, 2014; Lee et al., 2016; Zhao and Luo, 2020; Zhao and
Luo, 2021a). For more complicated, non-Gaussian fields, machine
learning or deep learning methods can be used for dimensionality re-
duction (Chen et al., 2022; Chen et al., 2021; Laloy et al., 2018; Laloy et
al., 2017; Pang et al., 2020). Efficiency of numerical methods can be im-
proved through accelerating the process of solving the linear system re-
lated to forward problems such as using efficient embeddings on the co-
variance matrix, upscaling the parameter fields or implementing quasi-
Newton methods for approximating Jacobian matrices (Broyden, 1965;
Nowak and Cirpka, 2004; Nowak et al., 2003; Saibaba et al., 2012;
Zhao et al., 2022; Zhao and Luo, 2021b).

In the present research, we aim to explore a new method, physics in-
formed neural network (PINN), for solving high-dimensional HT in-
verse problems. PINN has demonstrated good potential in inverse mod-
eling due to its pointwise computation and mesh-free property. PINN is
a deep neural network (DNN) in structure, but unlike DNN which only
contains the loss function of the residuals of data matching, PINN inte-
grates additional constraints from prior physics information in the loss
function to overcome the inability of traditional DNNs for absorbing
prior physics knowledge (Raissi et al., 2017a; Raissi et al., 2017b; Raissi
et al., 2017c; Raissi et al., 2017d). These constraints are mathematically
expressed in partial differential equations (PDEs) and derivative values
approximated by automatic differentiation (AD) (Griewank, 2003). Af-
ter optimizing such a loss function, PINN can make effective predictions
in accordance with the governing PDEs in addition to the observed data
(Jagtap et al., 2020; Karniadakis, 2019; Kharazmi et al., 2021; Raissi
and Karniadakis, 2018). For groundwater inverse problems,
Tartakovsky et al. (2020) used two PINNs to jointly solve the forward
and inverse groundwater flow problems: one was used as the forward
model for approximating hydraulic heads, and the other as the inverse
model for estimating heterogeneous hydraulic conductivities. The
study was extended to groundwater transport problems by assimilating
tracer concentration and hydraulic heads data together for inversing
the hydraulic conductivity field (He et al., 2020; He and Tartakovsky,
2021). Wang et al. (2020) developed a theory-guided neural network
(TgNN), which was incorporated with weak form PDE constraints and
used to infer the inverse solution of a Gaussian hydraulic conductivity

field with known spatial covariance information (Wang et al., 2021a).
PINN has also been applied to inverse problems in unsaturated ground-
water flow (Depina et al., 2022).

Compared with gradient-based GA, PINN transformed the inverse
problem into a predictive task and solved it directly by a continuous
function on mesh coordinates (Bottou and Bousquet, 2008; Zhu et al.,
2019). The required gradients, whether in the variable space or the
model coefficient space, were evaluated using AD, which was mesh-free
and much faster than implementing groundwater flow simulation to de-
termine the Jacobian matrix (Yang et al., 2021; Yang et al., 2020; Yang
and Perdikaris, 2019). Although PINN theoretically has the potential to
deal with large-scale inverse problems due to its pointwise computation
and mesh-free property, it has not been tested for estimating high-
resolution parameter fields. For example, in the above-mentioned
groundwater application literature, the number of hydraulic conductiv-
ity to be estimated is on the order of 103 –104 for PINN, while GA has
been successfully applied to estimate high-resolution hydraulic conduc-
tivity fields with millions of unknowns (Lee and Kitanidis, 2014; Zhao
and Luo, 2020). Tartakovsky et al. (2020) investigated the effect of the
number of collocation points with PDE regularization and demon-
strated that approximately 10 % of the total grid can provide inverse re-
sults comparable to the full grid. However, their problem dimension is
only 1,024, i.e., a 32 × 32 field. For a high-resolution field with mil-
lions of unknowns, 10 % of the total collocation points for PDE regular-
ization are computationally unaffordable.

In this study, we develop a hydraulic tomography-PINN (HT-PINN)
to jointly solve forward and inverse problems for two-dimensional
large-scale hydraulic tomography. To the best of our knowledge, this is
the first PINN for groundwater inverse problems involving pumping
tests, especially multiple pumping tests. We extend the application of
PINN by incorporating the batch training technique to solve large-scale
inverse problems for estimating high-resolution parameter fields with
over millions of unknowns. Unlike traditional batch training techniques
that divide big data into subsets, we divide collocation points with PDE
regularization into subsets while keeping all measurement data as one
batch to train the network sequentially. We investigate the collocation
point batch training for the developed HT-PINN to demonstrate high
computational efficiency based on pointwise computation and mesh-
free property. Furthermore, we compare the performance of HT-PINN
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Fig. 6. Performance of for inverse modeling of hydraulic tomography. (A) reference field; (B) estimation from ; (C) true vs estimated lnT;

Fig. 7. Uncertainty quantification of HT-PINN by repeating the inversion with different initial guess and batch generation. (A) uncertainty of evaluation metrics.
The orange plot (acc) is the map accuracy, the gold plot is the inverse relative residuals ( ), and the green plots are forward relative residuals of 5 simulated pump-
ing tests ( , , , , ); (B) variance of inverse estimation of transmissivity. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

with GA for estimating parameter fields at different resolutions and dis-
cuss the measurement data required for the developed HT-PINN.

2. Models and method

2.1. Groundwater flow with pumping

The general governing equation for groundwater flow in saturated
porous media with source/sink terms is given by:

(1)

where is specific storage, is time, is hydraulic head, is the
water accumulation/reduction rate in the selected control volume, and

is specific discharge vector. For simplicity, we consider hydraulic to-
mography in a confined, isotropic, heterogeneous aquifer in a 2D spa-
tial domain in a time window . Thus, at a location or grid
in the domain with no source/sink ( ), the specific governing PDE
becomes:

(2)

where is isotropic, heterogeneous hydraulic transmissivity. At the
initial condition (IC), =0, we have background hydraulic heads:

(3)

To satisfy Neumann ( ) and Dirichlet ( ) boundary conditions
(BCs) of the domain, we have:

(4)
(5)

where is the unit vector normal to Neumann BC. If water is ex-
tracted from a pumping well located in a specific grid ( ) at a con-
stant flow rate, , the governing equation for this grid is:

(6)

Eqs. (2) – (6) complete a PDE system for groundwater flow in a
pumping test. If is fully characterized, can be solved with
numerical solvers for given initial and boundary conditions and pump-
ing schedules. This is known as a forward problem. Reversely, estimat-
ing spatially variable with measurements of at specific
monitoring locations and time and limited local measurements of hy-
draulic transmissivity is an inverse problem, which is the focus of the
present study. In hydraulic tomography, multiple sets of can be
collected by conducting pumping tests sequentially at different pump-
ing wells.

2.2. PINN forward model

To construct a PINN forward model for hydraulic re-
sponses in a pumping test, the loss function is composed of
residuals from data matching, IC constraint, BC constraints and PDE
constraints. These residuals should be evaluated at separate time steps
in the time window , except for the residual of IC constraint which
is determined at = 0. The PDE constraint residual is the left-hand side
of Eq. (2):

5
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Table 2
Model performance with different batch sizes, number, and generation meth-
ods.
Batch Accuracy

(%)
(%) Training

time (s)

Type Number
( )

Size
( )

Mean s.t.d Mean s.t.d

random + recurrent 10 0 73.83 9.37 21.74 6.87 315
10 100 95.67 1.09 9.13 0.67 1200
10 200 95.58 1.35 9.28 0.78 1475
10 300 96.35 1.43 9.28 0.65 1719
10 400 95.46 1.00 8.98 0.68 1953
10 600 96.05 1.06 9.28 0.48 2468
10 900 96.40 1.19 9.15 0.84 2768
10 1200 96.15 1.62 9.95 1.08 3141
20 100 96.80 – 9.02 – 2400
20 300 95.61 – 8.98 – 3450
20 600 96.59 – 9.76 – 4890
1 3000 86.77 – 10.27 – 34,986
1 9000 84.69 – 8.74 – 103,380

random + non-
recurrent

– 100 95.05 – 9.94 – 1223
– 300 96.45 – 9.26 – 1838
– 600 94.75 – 9.81 – 2618

uniform + recurrent 10 100 95.11 – 10.22 – 1212
10 300 94.91 – 9.92 – 1629
10 600 95.90 – 9.88 – 2482

(7)

where means that residual is evaluated with and
. The partial derivatives and gradients on the right-hand side are

approximated by AD. The residuals are evaluated for two types of grids
pumping and non-pumping grids. For a non-pumping grid , i.e.,
no pumping well is located in the grid, using mean squared error (MSE)
as a metric, the PDE loss ( ) is expressed as:

(8)

For simplicity, the total number of non-pumping grids, may be
the total grid number if no pumping is applied in the domain. However,

can be selected and does not necessarily depend on the domain reso-
lution.

For a pumping grid , the pumping PDE loss ( ) in MSE is
given by:

(9)

In a pumping test, if water is drawn from a single well located in a
grid, and are the coordinates of the grid where the pump-
ing well is located.

The IC constraint from Eq. (3) is applied to IC grids , which
can be anywhere in the spatial domain. The resulted MSE loss ( )
is expressed as:

(10)

BC constraint residuals are evaluated for two types of domain
boundary grids: Neumann and Dirichlet boundary grids, described by
Eqs. (4) and (5), respectively. For Neumann BC grids , the MSE
loss ( ) evaluation requires the partial derivatives on .

(11)

The partial derivatives should be determined across the boundary.
For example, for a rectangular domain, if Neumann BC is on the left or
right boundary, then , and

is used for the top or bottom bound-
ary. The partial derivatives in Eq. (11) are approximated by AD.

For Dirichlet BC grids , the MSE loss ( ) is:

(12)

The numbers of grids, and , and the spatial coordinates
, of Neumann and Dirichlet BC grids depend on the do-

main resolution and boundary setup.
Data matching residuals are evaluated for grids with monitoring

wells and hydraulic head measurements. For monitoring grids
and measured hydraulic heads , the MSE loss ( ) has
the same form as :

(13)

is the number of measurements, and are the coordinates of
monitoring wells.

The total loss of the forward problem ( ) is the sum of the
weighted loss terms:

(14)

The weights of the loss terms, ( ), are hyperparame-
ters.

It should be noted that in different pumping tests, the coordinates of
the pumping well, , are different, and the coordinates of other
types of grids other than the domain boundary have also changed. Con-
sequently, different need to be trained as forward models
corresponding to different pumping wells. Therefore, to simulate a hy-
draulic tomography consisting of sequential pumping tests at different
locations, PINN forward models, , , are needed
to serve in ensemble as the surrogate model, and the total loss function
is the sum of Eq. (18) for all individual pumping tests.

2.3. PINN inverse model

To estimate the hydraulic transmissivity field , we develop an
inverse PINN model, . Its data matching loss is given by:

(15)

where are the coordinates of the grids with direct measure-
ments of hydraulic transmissivity, and is the number. These mea-
surements are directly used to constrain the hydraulic transmissivity
distribution, and no more information or assumptions such as spatial
covariance are needed. The BC and IC constraints do not apply to

, but the PDE constraints are involved. Substituting in
Eq. (11) with , the PDE residual function of the pumping test
is expressed as:

6
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Fig. 8. Model performance and train time of different batch combinations. (A) different batch generation methods with the same batch size and number; (B) batch
number is 10, the batch size is from 0 to 1200; (C) large batch: =200, 600, 1200 ( = 10) vs small batch: =100, 300, 600 ( = 20).

(16)

This updated residual function is used in Eqs. (8) and (9) to evaluate
the PDE constraint loss for pumping and non-pumping grids. The total
loss of the inverse problem ( ) is given by:

(17)

where is the weight of data matching loss on direct measure-
ments. is the forward problem loss corresponding to the pump-
ing test , where a specific PINN surrogate forward model is
trained to approximate its water heads. All time steps and pumping
tests in hydraulic tomography analysis provide equivalent inferences
for the inversion, leading to the same weight in the loss function. Al-
though Eq. (17) is labeled as the inverse problem loss, it is the com-
bined loss of the inverse problem and all forward pumping tests. To
minimize this loss, we train all networks simultaneously even though it
looks more complicated. However, since model coefficients in

and are randomly initialized, their predictions at
the beginning are usually far from the reference field. Training one net-
work with meaningless predictions from other networks probably mis-
guides the optimizing direction, which makes it harder to achieve co-
convergence. When the inverse problem loss is minimized, HT-PINN
can provide an inverse network for estimating hydraulic transmissivity
as well as an ensemble surrogate forward model for approximating hy-
draulic heads under different pumping tests. Fig. 1 shows the flowchart
and structure of HT-PINN, including all the loss functions presented
above.

2.4. Batch training of collocation points

We design batch (or mini-batch) training for the developed HT-
PINN inverse model to solve large-scale inverse problems for estimating
high-resolution hydraulic conductivity fields, up to millions of un-
knowns. Batch training has been commonly used to prevent DNN from
overfitting and shorten the training time for big data problems (Jacob
et al., 2022). However, in groundwater inverse problems, measure-
ments including both direct and indirect measurements are not large.
The primary problem is the high-resolution parameter field to be esti-
mated, which corresponds to computationally expensive forward model
simulations. For PINN applications to estimate a high-resolution hy-
draulic conductivity or permeability field with up to millions of un-
knowns, it is impossible to include the PDE constraints at all grids. Even
a small fraction such as 10 % is computationally expensive. Thus, in-
stead of collocating all grids in one batch, we use a series of mini-
batches containing sampled non-pumping grids. Three hyperparame-
ters need to be determined: batch size, number of batches, and sam-
pling method. A large batch size may lead to global optima at the cost of

slow convergence (Ioffe and Szegedy, 2015; Li et al., 2021; Masters and
Luschi, 2018; Wilson and Martinez, 2003). On the other hand, using
mini-batches may have fast convergence, but may not be guaranteed to
converge to the global optima. Here, we use three methods for generat-
ing batches:

(1) Random and non-recurrent: generate a new batch at each
iteration through random sampling from non-pumping grids;

(2) Random and recurrent: generate a certain number of batches by
randomly sampling before training and use these batches
repeatedly in subsequent training iterations;

(3) Uniform + recurrent: uniformly sample non-pumping grids to
generate a certain number of batches and use these batches
repeatedly in subsequent training (McCandlish et al., 2018).

3. Numerical experiments

3.1. High-dimensional HT base experiment

A two-dimensional base experiment of HT is implemented in a
large-scale high-resolution (1024 × 1024) transmissivity field. The ex-
perimental field is generated with a Gaussian spatial covariance
function. The generation method implements PCA decomposition on
the covariance matrix. 50 top-ranked principal components are re-
tained as the projection matrix, and normally distributed random vari-
ables are generated as projections, which retains over 90 % of the total
variance (Fig. 2B). The field is scaled to a unit square domain so that the
spatial coordinates are dimensionless ( ). The top and
bottom boundaries are impermeable (Neumann boundary) and left and
right boundaries are constant-head (Dirichlet boundary). Initially, hy-
draulic head on the field is 0 m. The geostatistical and hydrogeological
parameters are listed in Table 1. The geostatistical parameters for the
Gaussian covariance model are similar to previous PINN applications
(Tartakovsky et al., 2020). The well network for the HT survey consists
of 25 wells, numbered from p1 to p25, evenly distributed in the central
area of the domain (Fig. 2A). Pumping events are performed sequen-
tially in 5 pumping wells located at the center (p13) and corners (p1,
p5, p21 and p25). For each pumping test event, water is withdrawn at a
constant rate from one of the 5 pumping wells, and hydraulic heads are
observed from the other 24 monitoring wells as indirect measurements.
For transient data, hydraulic heads are evenly observed 10 times within
1 h. The time interval between two consecutive observations is 0.1 h
(time input can also be seen as dimensionless given that the scaler is
1 h). For steady-state data, hydraulic heads are only observed once at
the steady-state phase. Random noises with a variation of 5 % from the
true value are added to corrupt both these indirect measurements and
direct measurements of transmissivities. Values of direct and indirect
measurements are normalized through dividing by L2 norm before be-
ing used by HT-PINN as reference data.
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Fig. 9. Inverse estimation results of HT-PINN with a different number of pumping tests (indirect measurements). (A) True lnT field; (B) inverse results by HT-PINN
with 5 pumping tests; (B) inverse results by HT-PINN with 9 pumping tests.

3.2. HT-PINN implementation

For the steady-state HT experiment described above, the developed
HT-PINN contains 5 forward neural networks, , =1, 5, 13,
21, 25, corresponding to different pumping well, and 1 inverse net-
work, . All networks have 6 fully connected layers with ac-
tivation functions, each containing 50 hidden units. The sample grids
for evaluating and are uniformly distributed on Neumann
(top–bottom) and Dirichlet (left–right) boundaries with
and = 128. According to the pumping schedule, the well grids are
separated as samples for and with = 1 and = 24. Di-
rect measurements of transmissivity are uniformly distributed in the
domain with = 61 (Fig. 2 B).

In the developed HT-PINN, a relax region is defined as a square area
(30 m 30 m) centered on the pumping well. Xu et al. (2021a) dis-
cussed that the solution in a pumping test always has control volumes
near the pumping point (source/sink) with significantly larger PDE
residuals than the outer region. Thus, the loss function may be domi-
nated by the collocation points in this region. Setting the relax region is
a tradeoff between the PDE regularization and the solution smoothness.
Outside the relax region is the PDE regularization region, where the
grid is strictly governed by Eq. (2), i.e., the non-pumping grid. We im-
plement the random and recurrent batching method, i.e., the method
(2) discussed in the previous section, to train the HT-PINN. We generate
10 batches, each containing 900 randomly sampled non-pumping collo-
cation points with PDE constraints for each pumping test. These collo-
cation point batches are recurrently used to evaluate
with = 900 at each iteration. In total, we include 9,000 PDE-
constrained collocation points for each pumping test and 45,000 collo-
cation points for all the five pumping tests.

For the transient HT experiment, we have 10 determined time
steps = 0.1, 0.2, …, 1.0. At each time step, the data composition
mainly refers to the steady-state experiment except for the PDE batch
size which is reduced to 300 ( = 300). Aggregately, the number of
collocation points in one transient pumping test with 10 time steps will
be 30,000 and in the whole experiment will be 150,000. With consider-
ation of unique IC constraints, we add monitoring wells as sample grids
for evaluating causing = 24.

In both types of experiments, neural networks are trained with
Adam optimizer on the Google Colab Platform. Training is counted by
epoch, each containing 100 iterations for the transient experiment. In
each iteration, a specific PDE batch, measurements of hydraulic heads
and transmissivities, Neumann and Dirichlet boundary grids, IC grids,
and the pumping grid are fed to backpropagation. So one epoch can
cover data batches at every time step. HT-PINN is trained for 3000
epochs, and the learning rate decays from 1 × 10-3 to 1 × 10-4 after
1000 epochs. The weights of each loss term are: , ,

, , , , . These weights are
determined to keep each loss term at a similar magnitude to balance
their contributions to the total loss (Kingma and Ba, 2017). In a steady-
state HT experiment, each epoch only contains 10 iterations to cover
the data batches. And only 2000 epochs are needed to achieve compar-
ative convergence with the learning rate decaying from 1 × 10-3 to

1 × 10-4 after 1000 epochs. The weight of is not considered due to
the removal of and weights of other loss terms are unchanged.

3.3. Quantitative measures

For the forward model surrogate, the prediction error is quantified
by the forward relative residual metric, which is formulated as:

(18)

where and represent the true and approximated
hydraulic heads in vector form, respectively. Similarly, the inverse rela-
tive residual is evaluated by:

(19)

where and are the true and estimated transmissiv-
ity vectors. Moreover, the inverse result is accessed by map accuracy.
Map accuracy refers to what percentage of the grid has transmissivity
correctly inverted (Kang et al., 2017). The condition for correct inver-
sion is that pointwise estimation error is less than a predefined
threshold, set to 10 % in this study:

(20)

4. Results of numerical experiments

4.1. Transient base experiment

4.1.1. Forward model of transient problem evaluation
Fig. 3 shows the performance of the forward model in the transient

experiment. Fig. 3A shows the true (first row) and approximated (sec-
ond row) hydraulic heads at time steps from 0.1 to 1 h in a pumping
test with the pumping well located at the left bottom corner (p1) of the
well network. The approximated heads are from prediction
and the true hydraulic heads are solved from a numerical solver. The
color map and contour lines show that the model prediction agrees
with the numerical simulation result at every time step. Specifically,
at × = 0 and 1, the model reproduces the hydraulic heads of 0
defined by Dirichlet BC, and at y = 0, the contour lines are perpendicu-
lar to the boundaries defined by the impermeable Neumann BC. Fig. 3B
plots the indirect measurements collected from monitoring wells and
model prediction at monitoring wells on the time axis. In the plot, each
color indicates a specific monitoring well, stars note indirect measure-
ments, and solid lines note prediction from . It shows that well
learns the temporal trends implied by those indirect measurements and
initial conditions. At = 0, predicted hydraulic heads are 0 as a result of
initial condition constraints. Then, they start dropping down un-
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Fig. 10. Inverse results of fields with different structural parameters. (A1) true lnT of field A; (A2) – (A4) inverse estimates of field A with 61, 85, and 113 direct mea-
surements; (B1) true lnT of field B; (B2) – (B4) inverse estimates of field B with 61, 85, and 113 direct measurements.

til = 0.7. After that, hydraulic heads become unchanged and stay at a
steady state. Fig. 3C shows a scattered plot of the whole indirect mea-
surements in all five pumping tests and relative predicted hydraulic
heads. The R2 coefficient of determination is greater than 0.99. The rel-
ative residuals of for i = 1, 5, 13, 21, 25 are 6.14 %, 6.26 %,
6.23 %, 6.58 %, 6.53 %. All five models produce a satisfactory pre-
diction of hydraulic heads and are collectively supported as surrogate
models for inversion.

4.1.2. Inverse model under transient problem evaluation
Fig. 4 shows the inverse modeling results of TNN in the transient ex-

periment. By comparing Fig. 4A and B, the estimated transmissivity
field from TNN well describes the main distribution pattern of the true
field. Fig. 4C shows the scatterplot of true and estimated transmissivi-
ties for the entire field with over a million values. R2 coefficient is
greater than 0.92. The relative residual is 10.32 %, and the map
accuracy is 94.93 %. In this study, the number of known hydraulic
transmissivity data is only about 0.006 % of the number of parameters
to be estimated, which is far less than the number in previous studies
(Tartakovsky et al., 2020), but the estimation is sufficiently accurate.
The total running time of this experiment is about 34,260 s.

4.2. Steady-state base experiment

4.2.1. Forward model of steady-state problem evaluation
Fig. 5 shows the performance of the steady-state forward model.

Fig. 5A shows the numerically solved true steady-state hydraulic heads
in the pumping test p21 whose location is at the right bottom corner of
the well network. Fig. 5B shows the approximated steady-state hy-
draulic heads from the corresponding forward model . The
map can be regarded as a stagnant moment in the later phase of a
pumping test and a comparison of them shows that the model is in
good agreement with the numerical simulation result and follows the
defined Dirichlet BC and impermeable Neumann BC explicitly as the
model in the transient experiment. One more detail is the perpendicu-
larity of the contour line at y = 1, which is not shown in Fig. 3A. Fig.
5C shows the scattered plot of the true and predicted steady-state hy-
draulic heads in all five pumping tests. The R2 is greater than 0.99. The
relative residuals for i = 1, 5, 13, 21, 25 are 6.00 %, 9.37 %,
6.57 %, 7.13 %, 8.40 %. The steady-state forward model performs
equivalently well as the transient model.

4.2.2. Inverse model under steady-state problem evaluation
Fig. 6 shows the inverse modeling results of steady-state TNN. Fig.

6A shows the true lnT field. Fig. 6B shows TNN estimation which pre-
sents the main pattern of the true field. Fig. 6C shows the scatterplot of
true and estimated transmissivities on the whole field. R2 coefficient is
nearly 0.95. The relative residual is 9.09 %, and the map accuracy
is 96.85 %. This performance is even better than that in the transient
experiment. More attractively, the total running time of this experiment
is only 2769 s, which is much faster than the transient experiment and
computationally efficient for such a large-scale inverse problem. For
simplicity, in the following sections, HT-PINN in steady-state experi-
ments is used for further discussion.

4.3. Uncertainty quantification

There are mainly-two uncertainty sources for implementing the HT-
PINN: initial guesses of model coefficients and randomly selected
batches. The implementation is repeated by 50 times with different ini-
tial guesses and batch generation to analyze the model uncertainty. Fig.
7A shows the uncertainty of the evaluation metrics: inverse map accu-
racy, inverse residual, and forward residual. The mean and standard de-
viation of each metric are presented as dot and error bars. For map ac-
curacy, the mean and standard deviation are 95.82 % and 1.73 %, re-
spectively. For inverse relative residual, the mean and standard devia-
tion are 9.84 % and 0.78 %, respectively. Overall, with a relatively
small standard deviation, HT-PINN performs consistently well in all re-
peats. Thus, it can be concluded that the initial guess of the network co-
efficients and the random generation of batches have a limited effect on
the model performance. This implies that the developed HT-PINN has a
robust structure and contains enough coefficients, which make it very
likely to converge to a global minimum. In addition, HT-PINN is also ro-
bust to error noise added to the direct (transmissivity) and indirect (hy-
draulic heads) measurements. The PDE constraints enhance the
smoothness of model estimation and robustness, which can overcome
the influences of added data noises. Fig. 7B shows the variance map of
the best estimate. The variance is quite uniformly distributed, with
peak zones slightly larger than the rest of the map. The uniform vari-
ance is mainly due to the constraints from the direct and indirect mea-
surements distributed over the domain.
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Table 3
Inversion performance for random fields with different structural parameters.
Field (m) (m) Accuracy (%) (%) (%)

Field A 1 32 24 61 83.32 18.78 10.31
1 32 24 85 91.66 14.79 10.71
1 32 24 113 96.66 9.97 10.68

Field B 5 64 48 61 74.19 57.78 37.23
5 64 48 85 88.32 48.27 31.38
5 64 48 113 94.85 26.24 28.10

5. Effect of batching training strategy

A specific batch training method is used for the steady-state model
presented above. That is, among all the collocation grids with PDE con-
straints (greater than1 million), 10 batches are randomly generated
with 900 points per batch for each pumping test and recurrently use
them for training the HT-PINN. To investigate the impact of batch size,
the number of batches and batch generation method, the same trans-
missivity field and HT data of the base experiment are used and the
number of epochs and learning rate are kept the same for the model
training. Table 2 summarizes all the experiments and results.

5.1. Effect of batch sampling method

To compare the three batch generation methods listed in Table 2,
we choose the same batch number, , and batch size,

. The second method of random sampling and non-
recurrent batches can be regarded as an extreme case, in which a new
batch is generated for each iteration and the batch number is equal to
the number of training iterations. Thus, the total collocation points
used in the non-recurrent method are much larger than the recurrent
methods. Considering that 15,000 iterations and 5 pumping tests are
used in this test, the total size of the collocation points used is actually
many times the total grid number. Thus, many collocation points are re-
sampled in the iterative process. The method of uniform sampling is de-
signed to cover the entire domain except for the relax region. The map
accuracy of the inversion results of different batch generation methods
is very close, all around 95 %, which implies that the impact of differ-
ent batch generation methods on the inverse estimation accuracy is in-
significant. For all batch sizes, the training time of the non-recurrent
method is consistently slightly longer than the other two recurrent
methods. This is because of the resampling at each iteration and the
convergence time for new samples. In addition, all methods exhibit an
approximately linear increase in training time with increasing batch
size, as shown in Fig. 8A.

5.2. Effect of batch size

We then choose to use the method with recurrent random samples
to study the effect of batch number and size. With constant batch num-
ber, , the batch size is set from 0 to 1200, used in HT-PINN
to evaluate non-pumping PDE loss ( ). We repeat such tests ten
times, each time generating new batches and reinitializing the network
for uncertainty quantification. Fig. 8B shows the mean and standard de-
viation for accuracy and training time. Results are also summarized in
Table 2 along with the inverse relative residuals. We should notice that
when = 0, the training data does not contain any non-pumping
grids and is not evaluated. That is, the PDE constraint has no role
in the total loss. Therefore, the HT-PINN is relegated to a DNN that only
learns inversion from data fitting. The mean accuracy and relative
residual of the DNN are hardly as satisfactory as the developed HT-
PINN. Additionally, the associated inversion uncertainty is much larger
for the DNN, suggesting that the DNN is significantly affected by the ini-
tialization of network coefficients. The training time of HT-PINN is
longer than DNN because it uses AD to evaluate the partial derivatives

in PDE loss terms and takes longer to converge. The results show that
the DNN is not as good as the HT-PINN in providing robust predictions
given the small number of direct measurements in our experiment, or
that the DNN may require much larger data to achieve the accuracy of
HT-PINN with physical constraints (LeCun et al., 2015).

Staring from , the HT-PINN gains high accuracy and small
uncertainty. It illustrates that HT-PINN behaves more robustly to sparse
data. At the batch size , a total of 5000 PDE grids are collo-
cated, which is about 0.48 % of the total grids in the domain. Since ran-
dom sampling and PDE regions do not prohibit repetition, there may be
duplicate grids sampled and the actual grids with PDE coverage may be
lower. However, such a low coverage makes it possible to achieve a
high level of mean accuracy and low uncertainty already, and scaling
up the batch size does not improve accuracy and reduce uncertainty
(Fig. 8B). Similar discussions can be found in other groundwater appli-
cations, where only a single batch with different sizes is considered. For
example, Tartakovsky et al. (2020) used one batch of 300 PDE grids to
invert a groundwater flow field with a resolution of 32 32 without
pumping. Its coverage is about 30 %. In another groundwater flow and
transport application, He et al. (2020) used a batch of only 200 PDE
grids to invert a field with a resolution of 256 128. The coverage is
about 0.61 %. Xu et al. (2021a) used 5000 PDE grids to train a pumping
test forward model surrogate in a field with a resolution of 51 51. We
should note that neither absolute numbers nor coverage can provide us
with a constant collocation size threshold, as the results depend on the
specific forward PDE problem, field resolutions, and underlying para-
meter field smoothness. The uncertainty in all cases (standard deviation
around 1.5 %) is small, indicating that the network initialization and
random sampling have little effect on the inverse estimation. In con-
trast, training time increases with the number of total PDE collocation
grids (Fig. 8B). Thus, we can choose fewer PDE grids since no manifest
improvement is seen after = 100 (Hoffer et al., 2018; Nitish et al.,
2017).

5.3. Effect of batch number

To examine the effect of batch number, we control for the total num-
ber of collocated PDE grids and investigate whether training with a
small number of large batches or a large number of small batches is su-
perior. The total number of collocated grids for a forward problem is set
to 2000, 6000, and 12,000 for batches with = 100, 300,
and 600, respectively. Considering the HT-PINN performance is quite
stable with a small uncertainty, we do not repeat the test and only com-
pare with the average performance of = 10 and = 200, 600,
900. Fig. 8C shows the comparison and Table 2 lists the specific num-
bers. There is no significant difference in inversion accuracy within
each pair, with the largest difference being around 1 %. However,
training the model with 20 small batches takes longer for the same
number of epochs. It may be because training with more batches needs
to execute more switching batches. In extreme cases, when the batch
size is too large, the model performance suffers severely. We generate
one batch with 3000 and 9000 grids ( = 1 and = 3000, 9000).
The model is trained for 6000 epochs using a single batch with the
learning rate decreased from 1 × 10-3 to 1 × 10-4. The training time is
orders of magnitude longer than = 10 and = 300, 900, but the
inverse accuracy is unmatched due to the high-dimensional inverse
problem caused by large batches that is harder to converge. In the
supplementary material (Fig. S1), we also present a small-scale
(64 × 64) field and use all the grids in a single batch to train the model.
The training time is also orders of magnitude longer than the high-
resolution base experiment presented above.
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Table 4
Model performance of RGA and HT-PINN on inversing fields with different
resolutions.
Inverse
Method

Field
Resolution

Accuracy Runtime Iterations
/Epochs

Time per
iteration /100
epochs (s)(%) (%) (s)

RGA 64 × 64 90.55 34.03 40 7 5.69
128 × 128 92.93 27.91 202 7 28.87
256 × 256 90.42 30.92 975 8 121.83
512 × 512 90.79 42.63 5868 12 489.00
1024 × 1024 95.90 18.66 30,236 14 2159.71

HT-
PINN

64 × 64 94.90 25.91 1902 2000 95.10
128 × 128 92.96 27.54 1949 2000 97.47
256 × 256 90.57 17.68 1968 2000 98.40
512 × 512 90.14 27.4 1832 2000 91.54
1024 × 1024 90.35 11.6 2001 2000 100.05

6. Data demands for HT-PINN

In this section, we investigate the performance of HT-PINN on dif-
ferent data volumes of indirect and direct measurements. We choose
the random and recurrent method for batch generation, with a batch
number of 10 and a batch size of 100. The number and distribution of
direct and indirect measurements are provided in different scenarios.
All data is corrupted with 5 % noise.

6.1. Effect of indirect measurements

For the indirect measurement of hydraulic heads, two pumping sce-
narios are considered: one scenario is the same as the base steady-state
experiment, with pumping tests performed at 5 wells, i.e., p1, p5, p13,
p21 and p25, and the other includes pumping tests at 9 uniformly lo-
cated wells, i.e., p1, p3, p5, p11, p13, p15, p21, p23 and p25. In the sec-
ond scenario, the number of forward networks and indirect measure-
ments are 9 and 216, respectively. The transmissivity field and direct
measurements remain the same as the base experiment, shown in Fig.
2B.

Fig. 9 shows the true transmissivity field and inverse estimates for
both scenarios. For the scenario with 5 pumping tests, the map accu-
racy is 93.58 %, the inverse relative residual is 10.33 %, and the mean
of five forward model relative residuals is 10.17 %. In contrast, the in-
version performance of the 9-pumping test scenario is slightly better,
with a map accuracy of 96.40 %, an inverse relative residual of 9.73 %,
and an average of the nine forward model relative residuals of 8.83 %.
This is because more indirect measurements and PDE constraints help
improve inversion accuracy. Correspondingly, the computation cost in-
creases with the number of pumping tests. In this experiment, the train-
ing time is about 80 and 154 s per 100 epochs for 5 and 9 pumping
tests, respectively. The training time increases approximately linearly
with the number of pumping tests. Thus, using more pumping tests may
not always be the optimal plan for training HT-PINN, given the in-
creased computational and experimental cost and slight enhancement
in performance (Fig. 10).

6.2. Effect of direct measurements

As discussed by Tartakovsky et al. (2020), the requirement for direct
measurements of local transmissivity is related to the spatial distribu-
tion characteristics of the field. In the base experiment, 61 direct mea-
surements of transmissivity are used to constrain the parameter field,
which is significantly lower than previous research (Tartakovsky et al.
(2020)). To investigate the effect of direct measurements, we change
the structural parameters to generate random fields with different vari-
ance and correlation length, and invert them by feeding HT-PINN a dif-
ferent number of direct measurements. Table 3 lists the structural para-
meters used to generate two random fields. Both fields have a resolu-

tion of 1024 1024. Compared with the base experiment, field A has a
shorter correlation length and a smaller scale of peak-to-valley region-
alization. In contrast, field B has the same correlation length as the base
experiment, but with much greater variance, representing a highly het-
erogeneous field. We consider three cases with the number of measure-
ments, = 61, 85 and 113, corresponding to 0.006 %, 0.008 % and
0.011 % of the parameters to be estimated, respectively, and the loca-
tions are uniformly distributed. HT-PINN uses five pumping tests, the
same as the base experiment, and the batch generation uses the random
and recurrent sampling method with a batch number of 10 and a batch
size of 100. Due to the large value range of field B, we modify the net-
work structure by adding an exponential activation function to the out-
put layer. The gradient propagating from the exponential activation
function decays faster, therefore, we train the networks with more
epochs and higher learning rates to minimize the loss function. We set
the learning rate to 1 × 10-3 for the first 2000 epochs and 1 × 10-4 for
the other 1000 epochs.

In Fig. 8(A2), the HT-PINN trained with 61 measurements can locate
large patterns in the peak and valley region but loses many details. In
contrast, Fig. 8(A3) and (A4) show that as the number of measurements
increases to 85 and 113, HT-PINN gradually solves this problem and
provides a better description of the distribution details. This is also il-
lustrated by the map accuracy and inverse estimate relative residuals
summarized in Table 3. The relative residuals of forward models are
comparable for all three cases, indicating that the fitting to the indirect
measurements of hydraulic heads are similar because they are all un-
derdetermined inverse problems. Compared with the base experiment,
where 61 direct measurements provide high inversion map accuracy, it
is advantageous to have more direct measurements to estimate trans-
missivity fields with shorter correlation lengths.

Fig. 8(B2) – (B4) show the estimation of the highly heterogeneous
field, field B. When 113 direct measurements are used as the training
data, HT-PINN can provide a much smoother estimation with a higher
inverse accuracy. In addition, Table 3 shows that the relative residuals
of both inverse estimates and forward models are much larger than
the base experiment and all the experiments presented above. This is
because in highly heterogeneous transmissivity fields, where both di-
rect and indirect measurements differ by orders of magnitude, opti-
mizing the loss contribution is more challenging when assimilating
these different types of data together. Compared to the effect of indi-
rect measurements, we can see that the addition of direct measure-
ments can improve the inversion, especially in highly heterogeneous
fields and fields with short correlation lengths. Furthermore, in the
supplementary material (Fig. S3), we also show that our base experi-
ment results are better than Kriging results of the direct measure-
ments based on the corrupted data in the base experiment and true
covariance function.

7. Model scalability for field resolution

We compare the performance of the developed HT-PINN with batch
training techniques and a recently developed reformulated geostatisti-
cal approach (RGA) to inversely estimate fields with resolutions rang-
ing from coarse (64 64) to fine (1024 1024). Except for resolution,
other field characteristics including spatial covariance and domain BCs
and the pumping test strategy are the same as the base experiment. For
HT-PINN, direct measurements of transmissivity are collected at fixed
spatial coordinates in the domain, regardless of the field resolution. The
method of random and recurrent sampling is used to generate 10
batches of 100 grids with PDE constraints in each forward model. RGA
is a gradient-based optimization approach. As a dimensionality reduc-
tion method, RGA projects spatially correlated transmissivity on domi-
nant principal components of its covariance matrix and directly esti-
mates these projections. Hence, the number of forward model runs and
normal equations to be solved is reduced to the number of retained
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Fig. 11. RGA and HT-PINN inverse results for transmissivity fields with different resolutions. The left column contains the true fields, the center column contains HT-
PINN results, and the right column contains RGA results.

principal components, which is usually much smaller than the field di-
mension. In this experiment, we use the correct covariance model to
calculate the principal components. This condition is not necessary be-
cause biased spatial covariance can be iteratively corrected (Zhao and
Luo, 2021a). The first 100 principal components are retained, which
means that there are 100 unknown projections to be estimated. The
RGA forward model for simulating hydraulic tomography is a numeri-
cal finite element solver that is also used to generate the reference data
of hydraulic heads for both HT-PINN and RGA. Computation is imple-
mented on a desktop computer with an Intel® Core™ i7–7700 CPU at
3.60 GHz and 16.0 GB RAM.

Table 4 summarizes the map accuracy, the inverse relative residu-
als, and running time for each model. Fig. 11 shows the inverse results

of HT-PINN and RGA for each resolution. Fig. 12 directly compares the
map accuracy and running time of the two methods. Both methods pro-
duce high-quality inversions with over 90 % accuracy at all resolu-
tions. For HT-PINN, the map accuracy slightly decreases from the
coarse resolution (64 × 64) to the fine resolution (1024 × 1024).
This is mainly because we use constant batch numbers and sizes for all
resolutions. Therefore, for coarse resolution, the collocation points
may cover almost the entire grid, while for fine resolution, they are
only sparsely distributed. The accuracy can be further improved with
more epochs. However, this also depends on the random field gener-
ated, as the same sampling method yields over 95 % accuracy in the
high-resolution base experiment (see Table 2). The model scalability is
reflected by both the data requirements and trends of the running time.
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Fig. 12. RGA and HT-PINN scalability on field resolution. Bars show model in-
verse accuracy, and dashed lines show model running time.

For the iterative method of RGA, the running time per iteration in-
creases with the field resolution, and the number of iterations also in-
creases. This is due to the increased computational cost of forward
model simulations required to determine the Jacobian matrix and asso-
ciated matrix computation. For HT-PINN with batch training tech-
niques, the running time remains almost the same for all resolutions.
This is because the mesh-free nature of HT-PINN makes the running
time only depend on the batch size and number rather than the field
resolution, which is more advantageous for fine-resolution inversion.
In terms of total running time, HT-PINN with batch training surpasses
RGA after fields finer than 512 512. In fact, according to Zhao et al.
(2022), RGA can be implemented with upscaled principal components,
i.e., UPCIA, which has already achieved constant runtime for estimat-
ing fields with different resolutions. The total runtime of UPCIA de-
pends on upscaling factors. For example, the principal components of
dimension 1024 1024 can be upscaled to 16 16 so that a 1024
1024 field can be inverted faster than all the cases above. Even though
the developed HT-PINN may not be better than UPCIA on computation
efficiency, it still shows broad applicability and robustness to various
resolutions considering that the network structure of HT-PINN and the
batch generation method remain unchanged at all resolutions. We have
also successfully applied the developed HT-PINN to groundwater flow
inverse problems without pumping, which have been the main cases
discussed in the literature (Fig. S2 in the supplementary material).

8. Conclusion

The developed HT-PINN involves a neural network model for trans-
missivity and a series of neural network models to describe steady-state
and transient sequential pumping tests. It jointly trains all neural net-
work models by minimizing the total loss function including data fitting
errors and PDE constraints. New advances and findings include:

(1) To the best of our knowledge, this is the first PINN application to
invert the transmissivity field with pumping test data, especially
multiple pumping tests. Considering that the pumping test is one
of the main field tests for aquifer characterization, the
development of HT-PINN is necessary and important, especially
for extending PINN to field applications.

(2) We incorporate batch training technique into HT-PINN to
accurately and efficiently invert the high-dimensional
transmissivity field with over a million unknowns (1024 1024
resolution), a significant advance over the literature. The data
requirements are suitable, and the number of direct measurements
is only 0.006 % of the estimated parameters in the presented high-
dimensional field.

(3) We systematically study the effect of different batch training
methods, including batch generation methods, batch number and
size. Compared to batch number and size, the batch generation
method has a negligible impact on the inversion results and
running time. For the Gaussian field used in our experiment, a few
batches (10 in our experiments) consisting of hundreds of
randomly sampled collocation grids can meet the minimum
requirement of PDE constraints and yield satisfactory inversion
results. The batch training technique is more efficient than a
single batch with the same total collocation grids.

(4) The data requirements for indirect and direct measurements
are studied for random fields with different structural
parameters. In our experiment, 5 pumping test hydraulic
tomography can provide sufficient indirect measurements of the
hydraulic head for high accuracy inversion. Performing more
pumping tests may only slightly enhance the inversion. In
contrast, increasing direct measurements of transmissivity can
greatly improve the inversion, as direct measurements are often
limited and expensive in the field, especially for highly
heterogeneous fields and fields with short correlation lengths.

(5) Compared with the gradient-based RGA, the developed HT-PINN
exhibits great scalability in inverting fields with different
resolutions due to its mesh-free nature. In specific, the
computational cost of HT-PINN remains almost unchanged while
maintaining high inversion accuracy for high-resolution fields.
Conversely, the computational cost of RGA increases significantly
with increasing field resolution due to forward model simulations
required to determine the Jacobian matrix. Furthermore, data
requirements for HT-PINN do not increase with problem
dimensionality. This shows that the developed HT-PINN with
batch training technique is particularly effective for large-scale
inverse modeling of high-resolution fields.

In addition, the performance of HT-PINN shows higher inversion ac-
curacy compared to DNN with no physics information (i.e., PDE con-
straints) included in the loss function. It demonstrates that PINN is
more capable than DNN in solving inverse problems with sparse data,
particularly for problems with well-known forward models (Huang et
al., 2022; Wang et al., 2021b; Xu et al., 2021b).

Although the effectiveness of the developed HT-PINN with batch
training technique has been improved to be efficient for inverting high-
dimensional fields presented, there is still a long way to go before we
can claim that HT-PINN is superior to other inverse methods. A serious
issue is that the developed HT-PINN relies on direct measurements to
constrain the smoothness of model predictions, and the dependence be-
comes stronger when the geostatistical pattern is complex and variable
(Bengio et al., 2006), such as highly heterogeneous and short correla-
tion length. GA relies on the prior information of spatial covariance to
regularize the underlying parameter field, which also requires direct
measurements to estimate. But it is not necessary to have accurate prior
structural parameters because biased spatial covariance can be itera-
tively corrected (Zhao and Luo, 2021a). That is, it may not be necessary
to have many direct measurements to obtain an accurate estimation of
the spatial covariance. A feasible solution for HT-PINN is to incorporate
additional constraints, such as spatial correlation, and adapt it to in-
verse problems with fewer direct measurements. However, it is chal-
lenging to account for the uncertainty of spatial covariance. Another
limitation is that most of the parameter fields used in the literature and
this study are smooth, either described by a Gaussian covariance model
or only by a few principal components (i.e., dominant large-scale distri-
bution patterns) of an exponential covariance model. Since there is no
smoothness regularization in the developed HT-PINN, it has the poten-
tial to apply to parameter fields with complex distribution patterns,
such as non-Gaussian fields. However, it can be data-hungry and re-
quires much more collocation points to capture small-scale and com-
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plex patterns of variation (Dong et al., 2019; Klepikova et al., 2020).
These all need to be addressed in the application of PINN for inverse
modeling of large-scale complex parameter fields.
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