
1. Introduction
Inverse modeling of hydraulic tomography (HT) estimates spatially distributed fields of hydrogeological 
parameters, such as hydraulic conductivity, transmissivity and specific storage, using steady or time-dependent 
hydraulic head measurements in sequential pumping tests (Butler Jr. et al., 1999; Cardiff et al., 2009; Gottlieb & 
Dietrich, 1995; Huang et al., 2022; Illman et al., 2008, 2010; Liu et al., 2013; Liu et al., 2014; Tosaka et al., 1993; 
Yeh & Lee,  2007; Yeh & Liu,  2000; Zha et  al.,  2018; Zhu & Yeh,  2005). The most widely used approach 
for solving HT inverse problems is geostatistical approach (GA), including quasilinear GA (Fienen et al., 2008; 
Kitanidis, 1995) and successive linear estimator (SLE) (Yeh et al., 1995) The major bottleneck of GA is that 
it requires iterative forward model simulations to evaluate the Jacobian matrix, which are computationally 
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Plain Language Summary This study introduces an innovative approach for solving complex 
groundwater flow problems. In hydraulic tomography, we aim to estimate hydraulic properties of underground 
aquifers by analyzing water pressure measurements from wells. Traditionally, this process involves 
computationally intensive simulations and optimization techniques. We propose a predictive deep learning 
model called HT-INV-NN, which directly predicts the unknown hydraulic properties using machine learning 
algorithms. This eliminates the need for time-consuming simulations and optimization, making the inverse 
modeling process much more efficient. We conducted a series of numerical experiments using both Gaussian 
and non-Gaussian fields to evaluate the performance of our model. The results demonstrate that HT-INV-NN 
achieves high accuracy in estimating the hydraulic properties, even in challenging scenarios with complex 
channel patterns and varying smoothness levels. Our findings highlight the effectiveness and versatility of 
HT-INV-NN in handling different geostatistical variations and field characteristics. By leveraging the power 
of predictive deep learning, our approach offers a faster and more accurate solution to inverse modeling 
in hydraulic tomography. This has significant implications for groundwater management, environmental 
monitoring, and decision-making processes. Overall, our study presents a promising advancement in hydraulic 
tomography and contributes to the growing body of research on predictive modeling using deep learning 
techniques.
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expensive for large-scale, high-dimensional models. Many efforts have been invested to save the computation 
of GA through reducing the number of forward simulations or accelerating the computational implementation 
(Ambikasaran et al., 2013; Broyden, 1965; Kitanidis & Lee, 2014; Klein et al., 2017; Nowak & Cirpka, 2004; 
Nowak et al., 2003; Saibaba et al., 2012; Zhao & Luo, 2021a; Zhao et al., 2022).

Dimensionality reduction is usually used for HT inverse modeling for estimating high-dimensional parameter 
fields (Lee & Kitanidis, 2014; Zhao & Luo, 2020). Gaussian spatially correlated fields can be represented by 
a set of latent variables and a linear combination of orthogonal components obtained from Karhunen-Loève 
Expansions (KLE) or Principal Component Decomposition (PCA). The latent variables essentially quantify the 
fluctuations of the realization about the mean of the stochastic process along each component. If mean and prin-
cipal components are known a prior, GA can be reformulated (named RGA) to estimate low-dimensional latent 
variables instead of high-dimensional parameter fields (Zhao & Luo, 2020). RGA has been further extended to 
high-dimensional HT inverse problems with biased prior information by iteratively correcting principal compo-
nents (Zhao & Luo, 2021b). For non-Gaussian fields such as channel fields, the linear dimensionality reduction 
method discussed above can hardly extract effective low-dimensional parameterizations, unless there are other 
regularizations. Vo and Durlofsky (2014) proposed optimization PCA (OPCA) to reduce the dimension of binary 
channel fields. OPCA uses PCA to reduce the dimension but introduces a regularization term to force the esti-
mates to be binary.

Deep learning models have recently been used for groundwater inverse problems. Nonlinear deep-learning (DL) 
based methods such as variational autoencoders (VAE), convolutional adversarial autoencoder (CAAE), genera-
tive adversarial network (GAN) and spatial GAN (SGAN) have been used to obtain low-dimensional latent vari-
ables of non-Gaussian binary channel fields (Laloy et al., 2018; Mosser et al., 2017; Zhou et al., 2022). To solve 
HT inverse problems, Laloy et al. (2018) incorporated VAE or SGAN in the Bayesian framework by applying the 
Markov Chain Monte Carlo (MCMC) sampling method. In addition, Zhou et al. (2022) combined CAAE with a 
deep learning based surrogate model and ensemble smoother to solve inverse problem of multiple data assimila-
tion. A hydraulic tomography–physics informed neural network (HT-PINN) was recently developed for inverting 
large-scale HT for Gaussian parameter fields (Guo, Zhao, et al., 2023). PINN is essentially a deep neural network 
(DNN) constrained or regularized by governing equations of a physical system (Raissi et al., 2017a, 2017b, 2019). 
However, trained PINN forward models are not generalizable for different parameter realizations, and for estimat-
ing small-scale heterogeneities or non-smooth fields, a large number of collocation points and reference data may 
be necessary for training a PINN inverse model (Guo, Zhao, et al., 2023; He et al., 2020; He & Tartakovsky, 2021; 
Tartakovsky et al., 2020; Wang et al., 2021a, 2021b). Instead of identifying low-rank parameterizations, several 
deep learning methods directly output plausible realizations conditioning on the input reference data. For exam-
ple, Cui et  al.  (2022) proposed the GM-ConvCNP model, which embedded direct measurements in a spatial 
matrix as input and reconstructed channel fields conditioning on these measurements through CNN. Vu and 
Jardani (2022b) proposed the SegNet-Fracture model, which interpolated HT observations over the domain and 
used the interpolated map of hydraulic heads as input to estimate channel fields. However, since the underlying 
patterns of the channel field are not explicitly encoded, such models cannot be used to generate realizations, 
nor can they be combined with other inverse methods for estimating high-dimensional parameter fields. Huang 
et al. (2022) proposed using CNNs and positron emission tomography (PET) data to estimate the permeability 
distribution in 3D subsurface domains. The CNN architecture was designed based on 3D convolution and can 
effectively capture spatial patterns and relationships within the PET data.

In this study, we aim to explore the feasibility of using deep-learning (DL) predictive models to perform HT 
inverse modeling for estimating hydraulic conductivity or transmissivity fields through predicting latent varia-
bles. The novelty is to implement dimensionality reduction on hydrogeological parameter fields for Gaussian and 
non-Gaussian fields and use DL predictive models to directly learn the inverse modeling process from measure-
ments to latent variables. Our model is named HT-INV-NN and composed of a parameter field decoder and a 
latent variable predictor. The prior stochastic process of Gaussian and non-Gaussian fields is encoded as principal 
components and generators in trained GAN, respectively. The decoder simulates the prior stochastic process and 
recovers the predicted latent random variables to actual realizations. The HT-INV-NN with a PCA decoder is 
inspired by RGA and works with a known Gaussian process like most GA applications. The HT-INV-NN with 
a GAN decoder is inspired by Laloy et al. (2018), but uses a network different from SGAN for dimensionality 
reduction. The predictor is a fully-connected DNN that takes hydraulic heads monitored from HT as input and 
predicts latent random variables as output. The data for training the DNN is generated by forward simulations 
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on random fields generated by the decoder in HT-INV-NN. Therefore, unlike the methods discussed above, the 
simulations for training the predictor DNN can be implemented independently in parallel, and no additional 
forward model simulations or surrogate models are needed during the inverse modeling process.

This paper is organized as follows. First, we introduce dimensionality reduction of Gaussian and non-Gaussian 
random fields and their low-rank approximations. Second, we explain our model architecture and numerical 
implementation. Then, multiple numerical experiments of HT are presented to demonstrate the applications. 
Finally, conclusions and discussion are presented.

2. Random Field and Dimensionality Reduction
In this section, we briefly introduce random fields and dimensionality reduction methods we use for modeling. 
The general observation function describing the relationship between observable variables and unknown param-
eters is given by Equation 1:

𝐲𝐲 = f(𝐬𝐬) + 𝛜𝛜 (1)

where 𝐴𝐴 𝐲𝐲 ∈ ℝ
𝑛𝑛×1 represents an observed data vector, 𝐴𝐴 𝐬𝐬 ∈ ℝ

𝑚𝑚×1 is an unknown parameter vector, h represents the 
forward model, and 𝐴𝐴 𝛜𝛜 ∈ ℝ

𝑛𝑛×1 represents the white noise vector.

For HT, the function f represents a numerical model that simulates sequential pumping tests. The 3D governing 
equation for this model is:

𝑆𝑆𝑠𝑠

𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −∇ ⋅ (−𝐾𝐾∇𝜕) +𝑄𝑄 (2)

where Ss is specific storage, t is time, h is hydraulic head, K is hydraulic conductivity, and Q is the water accumu-
lation/reduction rate in the selected control volume. Our study specifically focuses on the estimation of hydraulic 
conductivity or 2D transmissivity field by assuming constant specific storage or storativity. Estimating specific 
storage fields would require additional regularization information, which is often unavailable in field settings 
or would necessitate making strong assumptions (Zhao & Illman, 2021). Thus, inverse modeling of HT in this 
study is to monitor the hydraulic heads and estimate the unknown spatial field s, which is hydraulic conductivity 
or transmissivity field. For high-dimensional or fine-resolution fields of s, dimensionality reduction is imple-
mented to encode s into low-dimensional variables. The decoding process then allows for the reconstruction 
of high-dimensional fields from the low-dimensional variables. This decoding process is useful for generating 
realizations with spatial distribution patterns similar to the original field.

2.1. Gaussian Field and PCA

Gaussian spatially correlated fields are typically described by first- and second-order statistical moments, that is, 
mean and covariance. We have:

�[�] = �� (3)

�
[

���
]

= � (4)

where E[·] is the expectation operator, 𝐴𝐴 𝐗𝐗 ∈ ℝ
𝑚𝑚×𝑝𝑝 represents the drift of mean, 𝐴𝐴 β ∈ ℝ

𝑝𝑝×1 represents the unknown 
coefficient vector of the drift function, and p is the number of mean drifts. Covariance matrix Q is symmetric and 
can be modeled by a two-point geostatistical covariance function. Q has a low-rank approximation using PCA. 
Assume 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐯𝐯𝑖𝑖 is a pair of eigen-value and vector, we sorted them in descending order of 𝐴𝐴 𝐴𝐴𝑖𝑖 , then, Q can be 
approximated by a k rank matrix Zk as Equation 5:

𝐐𝐐 ≈ 𝐙𝐙𝑘𝑘𝐙𝐙
T

𝑘𝑘
 (5)

𝐴𝐴 𝐙𝐙𝑘𝑘 ∈ ℝ
𝑚𝑚×𝑘𝑘 is the matrix with the first k scaled principal components at each column: 𝐴𝐴 𝐳𝐳𝑖𝑖 =

√

𝜆𝜆𝑖𝑖𝐯𝐯𝑖𝑖 . Thus, the Gauss-
ian process is approximated by a deterministic drifted mean and stochastic fluctuations as:

𝐬𝐬 ≈ 𝐗𝐗𝛽𝛽 + 𝐙𝐙𝑘𝑘𝛼𝛼 (6)
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where 𝐴𝐴 𝐴𝐴 ∈ ℝ
𝑘𝑘×1 ∼ N(𝟎𝟎, 𝐈𝐈) is the latent random variable vector representing the coefficients or projections of the 

stochastic fluctuations on scaled principal component axes. The inverse problem of estimating s can be trans-
formed to estimate β and α. Zk also serves as a decoder for recovering s from estimated β and α. In addition, Zk 
can be used to generate realizations by randomly sampling α from N(0,I).

2.2. Non-Gaussian Channel Field and GAN

Channel fields mainly refer to connected binary realizations. Typically, the prior information of channel fields 
is represented by a training image (TI), and each generated realization has spatial correlation similar to the TI. 
However, the spatial correlation of a channel TI can only be described by multiple-point statistics (MPS) instead 
of two-point statistics (Strebelle, 2002). Traditional MPS-based simulation is slow, which leads to exploration 
of deep learning (DL) based methods. In these DL applications, GAN is recognized as one of the most efficient 
models for generating channel fields. The original GAN was proposed by Goodfellow et al. (2014) as a neural 
network based generating model, which simulates an unknown stochastic process through training with real-
izations generated from it. Complete GAN is composed of neural network generator (G) and neural network 
discriminator (D). Latent random variables are inputs and random realizations are outputs for the generator. The 
discriminator takes a realization as inputs and provides a decision on whether the realization is from real data 
(real) or generated (fake). Two networks are trained jointly to minimax a common loss function. Both of them 
are forced to improve each other until a convergence that G can generate realizations that cannot be distinguished 
from the reference data, that is, D always predicts that the probability of an input to be real is 50%, whether it is 
actually the reference data or generated by the generator. Figure 1 shows a GAN with a binary cross-entropy loss 
function. The converged G is the imitation of the stochastic process of the reference data, which can be used to 
generate realizations with latent variables α:

� = �(α), � ∼ �(α) (7)

Similar to the Gaussian process, the latent variable vector α is the low dimensional parameterization of the gener-
ated realization s, which can be sampled from its prior distribution.

3. Inverse Method
The proposed inverse modeling is composed of a decoder for decoding latent variables to high-dimensional 
parameter fields and a predictor for estimating latent variable from measurements.

Figure 1. Diagram of GAN with a binary cross-entropy loss function. Generator (G) is a neural network with coefficients θ; 
Discriminator is a neural network with coefficients ω; x is realization from reference data labeled by one, α is latent variable 
vector sampled from a normal distribution, generated realization G(α) is labeled by zero. Solid lines represent forward 
propagation, and dash lines represent backpropagation. The backpropagation is ordered. In the first step, the discriminator D 
with coefficients ω is optimized to maximize the loss. In the second step, the generator G with coefficients θ is optimized to 
minimize the loss.

 19447973, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035408 by G

eorgia Institute O
f T

echnology, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

GUO ET AL.

10.1029/2023WR035408

5 of 19

3.1. Decoder Construction

3.1.1. PCA Decoder for Gaussian Field

For high-dimensional Gaussian fields with given covariance, the principal component matrix Zk is obtained by 
singular value decomposition (SVD) of randomly generated realizations (Lee & Kitanidis, 2014). The number or 
rank of principal components to be retained can be determined by the total variance that needs to be quantified. 
Figure 2 shows the decomposition of a Gaussian random field on the principal components. By sampling the 
latent variables α, a random realization can be generated. Similarly, for estimated α, this process is naturally used 
as a decoder to obtain estimated fine-resolution parameter fields.

3.1.2. GAN Decoder for Non-Gaussian Channel Fields

We consider two types of non-Gaussian channel fields: discontinuous and continuous. The basic channel fields are 
discontinuous and comprise two facies, representing high and low permeability zones (channel and non-channel). 
We used a MPS simulation program called snesim to generate discontinuous channel fields containing sinuous 
channels as the reference data for training a GAN (Liu, 2006). The generator in trained GAN is used as the 
decoder for discontinuous channel fields. The snesim program, originally developed by Strebelle  (2000) and 
later improved by Stanford Center for Reservoir Forecasting (SCRF), is publicly available at https://github.com/
SCRFpublic/snesim-standalone. Figure 3A1 shows the generated realizations by snesim. The resolution of the 
original TI is 250 × 250, and the resolution generated is 128 × 128. For continuous binary fields, they are derived 
from the discontinuous fields generated by snesim, which are regarded as the spatial mean. In order to introduce 
smaller-scale heterogeneity, a spatial covariance is applied to each field. The heterogeneous channel fields are 
smoothed using a Gaussian filter to emulate natural channel field, which are relatively continuous between differ-
ent facies. Figure 3B1 shows samples of continuous channel fields generated through this process. These fields 
are used as reference data to train a continuous-GAN.

Figure  4a illustrates the structure of the channel field decoder. In contrast to the original GAN architecture, 
which utilizes fully-connected neural networks (FC-NNs) for both the generator and discriminator, we adopt the 
deep convolution GAN (DC-GAN) proposed by Radford and Metz (2016) for improved performance. Here is a 
detailed description of the developed decoder.

The generator G is a convolutional-transpose neural network. The input is a normally distributed latent varia-
ble vector α with a dimension of 16. A dense layer maps input variables to hidden variables with a dimension 
of 2,048. Then, hidden variables are reshaped by a reshape layer to a 3D tensor of the size (8, 8, 32), which 
represents (height, width, channel). A generator module is designed with a 2D convolution transpose layer, a 

Figure 2. Decomposition of a Gaussian random field on its principal components. The random field has a resolution 1,024 × 1,024 and a Gaussian covariance model.
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leaky ReLU activation layer, and a 2D upsampling layer. In each module, the filter size of the 2D convolution 
transpose layer is 5 × 5, the stride is 2 along height and width, the padding at boundaries is the same, and the 
number of output channels is twice the number of input channels, so the size of input tensors will double on all 
three dimensions. The Leaky ReLU activation layer is y = max(y,ay), a = 0.2. The 2D upsampling layer works on 
each channel and has a ratio of 2 along height and width, doubling the size of input tensors again on height and 
width. Thus, the size of input tensors in each module is four times on height and width, and twice on the channel. 
We use two modules consecutively to show that the size of reshaped tensors changes from (8, 8, 32) to (32, 32, 
64) to (128, 128, 128). At the output layer, tensors are downsized from (128, 128, 128) to (128, 128, 1) by a 2D 

Figure 3. Binary non-Gaussian channel fields. (A1) Discontinuous realizations generated by snesim with a TI from Strebelle (2002); (A2) Realizations generated by 
the discontinuous-GAN trained with discontinuous realizations; (B1) Continuous realizations generated by snesim, fluctuated by Gaussian covariance and smoothed by 
Gaussian filter. (B2) Realizations generated by the continuous-GAN.
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convolution transpose layer with filter size of 5 × 5, strides of 1, same padding on boundaries, and a hyperbolic 
(tanh) activation function is used to bound the outputs within [−1, 1].

The discriminator D is a convolutional neural work. The input is a realization of resolution 128 × 128. We trans-
form it to an input tensor and extend a dimension along the channel, so the size of the input tensor is (128, 128, 
1). A discriminator module is designed with a 2D convolution layer and a Leaky ReLU layer. The Leaky ReLU 
layer is same as the one in the generator module, and the convolution layer has filter size of 5 × 5, stride of 2 along 
height and width, and same padding at boundaries. We repeatedly use this module three times, and the number 
of output channels is 64, 128, 128. The tensor size track by each discriminator module is (128, 128, 1), (64, 64, 
64), (32, 32, 128), (16, 16, 128). A dropout layer is used with rate at 0.2. Then, the (16, 16, 128) 3D tensor is 
flattened to a vector and mapped by a dense layer to dimension of 1. The activation function of the dense layer is 
sigmoid, so the output is bounded within [0, 1], representing the probability of the input realization being real or 
from real data. The development software employed Tensorflow Keras. For more detailed information about each 
component in the model, please refer to the official website at https://keras.io/api/layers/.

During training, the binary field values are rescaled to −1 and 1. We used a total of 1,000 realizations, batch size 
of 100, binary cross-entropy loss function and the Adam optimizer with a learning rate of 0.5. The network was 
trained for 5,000 epochs. Computation was implemented on Google Colab platform with NVIDIA T4 Tensor Core 
GPU at backend, hardware computational time is 0.68 hr Figure 5 shows the learning curves of D and G for the 
discontinuous-GAN, and at specific steps, we sample generated images (in a 3 × 3 grid) to show the status of G. At an 
early stage, D obtains a fast loss drop because the fake images generated by the premature G are completely different 
from real images. After the turning point at the 200th epoch, the training loss of D and G continuously increase and 
decrease, respectively, as G gradually captures the characteristic of the TI and generates similar images. As G matured 
after 2,000 epochs, fake images are close to the real images in terms of spatial patterns, and the adversarial learning 
converges typically with the loss of D being greater and the loss of G being smaller compared with early ages. The 
network structure and training process of the continuous-GAN are the same as the discontinuous-GAN.

Figure 4. Models of channel field decoder and Predictor. (a) The channel field decoder in structure of deep convolutional generative adversarial network (DC-GAN). 
(b) Predictor in structure of fully connected neural network (FC-NN). The models are developed with Tensorflow Keras and visualized by visualkeras (Gavrikov, 2020). 
Legend at bottom shows the label of components in the model. More details can be found at: https://keras.io/api/layers/ and https://github.com/paulgavrikov/visualkeras.
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After the training process, we utilize the generator G as the decoder to generate new realizations for training the 
predictor. Figure 3A2 showcases four randomly chosen samples of the generated realizations, which visually 
appear similar to the samples in the reference data shown in Figure 3A1. Similarly, Figure 3B2 displays four 
continuous-GAN generations, which exhibit similarities to the samples in Figure 3B1 representing the reference 
data for continuous channel fields. Additionally, the connectivity of two facies in the generated and reference 
fields is evaluated with two cluster functions as quantitative metrics. Figures 6A1 and 6A2 display the connec-
tivity of facies 0 (low permeability media) along the horizontal (X) and vertical (Y) directions, respectively. 
Figures 6B1 and 6B2 display the connectivity of facies 1 (high permeability media, channels). The blue solid 
lines represent the mean connectivity of 200 randomly chosen reference fields, while the blue dashed lines repre-
sent the two standard deviation bounds. The gray lines show the connectivity of the 200 generated realizations by 
the trained GAN, which predominantly fall within the blue dashed lines. These results suggest that the generator 
effectively captures the distribution of channel connectivity patterns in the reference data.

3.2. Predictor for Inverse Problem

Most DL models are trained to learn the forward model, that is, f(s) in Equation 1. Our method is to train a 
predictive model to directly learn the inverse process, that is, f −1(y). The predictor for both Gaussian and channel 
realizations is a fully connected neural network (FC-NN). Figure 4b shows the predictor structure. The input 
dimension equals to the number of monitored hydraulic heads. The input layer is followed by a batch normaliza-
tion layer. The predictor module is designed with a dense layer with batch normalization and a Leaky ReLU acti-
vate layer as the basic module. The dimension of hidden variables in the dense layer is 3,000. The Leaky ReLU 
layer is the same as that in DC-GAN. This module is repeated four times until the output layer. The output layer 
is a linear layer with layer normalization. The dimension of output variables is equal to the dimension of latent 
variables. The structures of DC-GAN and FC-NN are independently and empirically determined.

The constructed decoder can be integrated into the pipeline of training and validating the predictor. Figure 7 
shows the technical diagram, where the red and blue arrows indicate the training and validation route, respectively. 
During the training process, we sample latent variables and generate realizations through the decoder. Forward 
model simulations on these realizations can be implemented in parallel to prepare data as the input (sample 
features) for the predictor. A loss function of true and estimated latent variables is used to tune coefficients of the 
predictor through backpropagation. When the predictor is trained, we use another set of sampled latent variables 
to generate a true field to demonstrate its application for estimating the random field given the measurement data. 

Figure 5. Learning curve of DC-GAN. Red line is the learning curve of the generator G, blue line is the learning curve of 
the discriminator D. The loss is moving averaged on 100 epochs. Samples generated by G is drawn at 200, 500, 1,000, 2,000, 
3,000, 4,000, 5,000 epochs in a 3 × 3grid.
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The realization generation, data preparation, and predictor estimation are the same as the training process. The 
estimated latent variables are used by the decoder to generate the estimated realization.

4. Numerical Experiments and Results
To test the effectiveness of HT-INV-NN, we conduct multiple numerical experiments of HT to estimate heter-
ogeneous transmissivity or conductivity fields. The experiments can be divided into two sets: Experiments 1, 
2, and 3 involved Gaussian random fields with a PCA decoder, while Experiments 4 and 5 focused on binary 
non-Gaussian channel fields. For the Gaussian fields, the dimension and covariance model of the experimental 
fields are 2D Gaussian, 2D Exponential, and 3D Gaussian, respectively. In the 2D random fields, 50 principal 
components are retained, and the domain size is 320  m  ×  320  m. The boundaries along the y-direction are 
impermeable, while the x-direction boundaries are constant-head. In the 3D experiment, the depth is 16 m, with 
an impermeable bottom and a confined top in the vertical z-direction. The storage coefficient is assumed to be 
10 −4 m, and the conductivity (or transmissivity in 2D case) is isotropic. The well network of HT includes 25 
wells, indicated by black dots in Figure 8a. These wells are labeled from p1 to p25 and are alternatively used 

Figure 6. Connectivity evaluation of different facies in discontinuous channel fields. Panels (A1) and (A2) shows the 
connectivity of facies 0 (low permeability porous media) in X (horizontal) and Y (vertical) directions; (B1) and (B2) shows 
the connectivity of facies 1 (high permeability channel) in X (horizontal) and Y (vertical) directions. The blue solid and dash 
lines denote the mean and uncertainty bounds of 200 reference fields generated by snesim. Gray lines are 200 realizations 
generated by the generator G.
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as pumping or monitoring wells. During each pumping test, water is withdrawn from a well at a constant rate 
of 3.6 m 2/hr, and the steady-state or transient hydraulic heads are monitored from the remaining 24 wells. To 
account for realistic conditions, all data values are corrupted with 5% white noise. Table 1 lists the hydrogeolog-
ical and geostatistical parameters used in the experiments.

Figure 7. Diagram of training and validating the predictor. α is the latent variable vector. Red lines show the training route. 
The variables used for training are subscripted by “t”. The loss function of training is mean squared error between true and 
estimated α. Blue lines show the validation route and the variables used for validation are subscripted by “v”. The validation 
metric is map accuracy.

Figure 8. Inverse modeling of Experiment 1: steady-state HT in a Gaussian field with a Gaussian spatial covariance model. (a) A reference lnT realization with a 
Gaussian covariance model, and black dots denote the HT well network; (b) The estimated field by HT-INV-NN; (c) Comparison of true and estimated lnT values; 
(d) True and estimated latent variables; (e) Comparison of measured hydraulic heads and simulated hydraulic heads using the estimated lnT field; (f) Variance map of 
estimations.
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For training the predictor, the number of samples is 4,500, the loss function is mean squared error between true 
and estimated latent variables, the batch size is 1,000, the number of epochs is 30,000, the optimizer is Adam, and 
the start learning rate is 10 −3 and decays to 10 −4 after 10,000 epochs and 10 −5 after 20,000 epochs. The compu-
tation platform is Google Colab with NVIDIA T4 Tensor Core GPU. For validation, the number of samples is 
500,  the quantitative metric is map accuracy with a threshold of 15%.

4.1. Gaussian Random Field Inversion

4.1.1. 2D Steady-State HT and Gaussian Covariance

In Experiment 1, we generate transmissivity (T) fields with a resolution 512 × 512. The Gaussian logarithmic 
transmissivity field (lnT) has a zero mean and a Gaussian spatial covariance model with a variance of 1. 50 domi-
nant principal components are retained to account for 90% of the total variance. For each steady-state HT, we 
sequentially conduct pumping tests in each of the 25 wells and collect steady-state hydraulic heads in the other 
24 wells, leading to totally 600 indirect measurements. Correspondingly, the input layer of the predictor has 600 
input dimensions, the total required training time is 0.92 hr.

Figure 8 shows the results of one experiment. The map accuracy of the estimated lnT field in Figure 8b compared 
with the true field in Figure 8a is greater than 96%, demonstrating high inverse modeling accuracy of the predic-
tive DL model, Figure 8c shows the estimations and true values. The lnT field is constructed from the estimated 
latent variables, which also match the true values on the dominant principal component (Figure 8d). In addition, 
the hydraulic heads simulated with the estimated field reproduce the noised input data with 5% relative residu-
als. For uncertainty analysis, Monte Carlo simulations are performed by inverse modeling of 20 realizations of 
measurement data with randomly generated white noises. Figure 8f shows the variance map. The accuracy of all 
20 estimations is over 96%, which shows that the predictor is robust to small perturbations on input. Moreover, 
we use 500 different realizations as the validation data to evaluate the inverse modeling performance. Results 
are summarized in Table 2. The mean map accuracy of the estimated field compared with the true field is 96%, 
and the standard deviation is 4%. The mean normalized residual between forward simulations with the estimated 
transmissivity field and the input hydraulic heads is only 5% and the standard deviation is 1%.

4.1.2. 2D Transient HT and Exponential Covariance

In Experiment 2, we conduct transient HT to collect time-dependent data for estimating a Gaussian field with 
an exponential covariance model. The field resolution is 256  ×  256, and the variance is 2, which is more 
heterogeneous and less smooth than the random fields in Experiment 1. We also retain the dominant 50 principal 
components for dimensionality reduction. In the transient HT, we sequentially perform five pumping tests at p1, 
p5, p13, p21, and p25, which are located at the four corners and the center of the well network. In each pumping 

Parameter Experiment 1 Experiment 2 Experiment 3

Domain size, Lx × Ly × Lz [m] 320 × 320 320 × 320 320 × 320 × 16

Spatial resolution, nx × ny × nz 512 × 512 256 × 256 64 × 64 × 16

Geostatistical property of transmissivity T [m 2/hr]

 Geometric mean of lnT 0 0 0

 Covariance model Gaussian Exponential Gaussian

 Variance of lnT, 𝐴𝐴 𝐴𝐴
2

𝑙𝑙𝑙𝑙𝑙𝑙
1 2 1

 Correlation length, λx × λy × λz [m] 64 × 48 64 × 128 64 × 64 × 6.4

Hydraulic and boundary conditions

 Pumping type Steady-state Transient Steady-state

 y boundaries Impermeable Impermeable Impermeable

 x boundaries h = 0 m h = 0 m h = 0 m

 Initial Condition h = 0 m h = 0 m h = 0 m

 Pumping Rate [m 3/hr] 3.6 3.6 3.6

Table 1 
Hydrogeological and Geostatistical Parameters for HT Experiments With Three Gaussian Fields
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test, we monitor hydraulic heads in all the other 24 monitoring wells at the time steps of 2, 4, 6, 8, and 10 (hour), 
yield a total of 600 measurements. Thus, the predictor has the same input dimension as the steady state experi-
ment and requires the same amount of training time (about 0.92 hr).

Figure 9 shows an example of Experiment 2. The map accuracy is over 90% (Figures 9a and 9b), also demon-
strating the effectiveness of the predictive DL model for estimating Gaussian fields with exponential covariance 
models. The overall inverse performance and hydraulic head predictions (Figures  9c–9e) are not as good as 
smooth Gaussian fields with Gaussian covariance models in Experimental 1. This is consistent with other inverse 
methods such as GA because hydraulic head measurements are not sensitive to small-scale heterogeneities (Zhao 
et al., 2022). In addition, although the number of measurements in Experiment 2 is equal to steady-state HT in 
Experiment 1, the transient HT actually conducts fewer pumping tests, causing the collected hydraulic heads to 
be less informative. The performance of HT-INV-NN on data sets of multiple realizations is presented in Table 2. 
The mean inverse accuracy is 85%, and the standard deviation is 6%. The relative residual between the input and 

Figure 9. Inverse modeling of Experiment 2: transient HT in a Gaussian field with an exponential spatial covariance model. (a) Reference lnT realization; (b) 
Estimation from HT-INV-NN; (c) Comparison of true and estimated lnT values; (d) True and estimated latent variables; (e) Input hydraulic heads and simulated 
hydraulic heads with the estimated lnT field.

Experiment Field type

Accuracy of lnT estimation Normalized residual of hydraulic heads

Mean ± std Best Mean ± std Best

Experiment 1 2D Gaussian 0.96 ± 0.04 0.99 0.05 ± 0.01 0.04

Experiment 2 2D Exponential 0.85 ± 0.06 0.98 0.05 ± 0.01 0.04

Experiment 3 3D Gaussian 0.97 ± 0.02 0.99 0.07 ± 0.01 0.05

Experiment 4 2D Binary Channel 0.85 ± 0.04 0.93 0.27 ± 0.11 0.07

Experiment 5 2D Continuous Channel 0.88 ± 0.06 0.99 0.07 ± 0.03 0.03

Table 2 
Inverse Modeling Performance on Multiple Validation Data Sets in Numerical Experiments
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simulated hydraulic heads is about 5% with a standard deviation of 1%, which are similar to Experiment 1. This 
reveals that the inverse problem may be ill-posed, that is, HT in true and estimated fields with a lower map accu-
racy still provides a similar hydraulic head prediction.

4.1.3. 3D Steady-State HT and Gaussian Covariance

In Experiment 3, we generate conductivity (K) fields at a resolution of 64 × 64 × 16. The Gaussian logarithmic 
conductivity field (lnK) has a zero mean and a Gaussian spatial covariance model with a variance of 1. The 
steady-state HT is conducted with pumping tests in each of the 25 wells and steady-state hydraulic heads is 
collected in the other 24 wells, with hydraulic heads measured in each 1-m-deep layer. This results in a total of 
9,600 measurements (24 × 25 × 16). So, the predictor input dimension is modified to 9,600, containing more 
tunable coefficients in the input layer, and the required training time is approximately 3.67 hr.

Figure  10 illustrates the impressive performance of 3D HT-INV-NN. Specifically, Figures  10A1 and  10A2 
display the reference lnK field and hydraulic heads map in the pumping test at p1, respectively. Figures 10B1 
and  B2 show the estimated lnK field and simulated pumping test p1 based on the estimated field. The map 
accuracy is over 99%, demonstrating the high accuracy of the model. The input data is also reproduced with a 
relative residual of 4% and an R 2 coefficient of over 0.96, as shown in Figure 10d. Moreover, Figure 10c depicts 
the closely aligned predicted and true latent variables. The quantitative metrics of the model performance over 
500 validation data are summarized in Table 2. The mean and standard deviation of map accuracy are 97% and 
2%, respectively. Additionally, the mean and standard deviation of the relative residual of the simulated hydraulic 
heads are 5% and 1%, respectively. This performance is comparable to the 2D Gaussian experiment and better 
than the 2D exponential experiment, indicating that spatial correlation is a more impactful factor when inverse 
modeling a Gaussian random field with PCA decoder. The smoother and less variant field can be better encoded 
in PCA components.

4.2. Binary Non-Gaussian Channel Field Inversion

In experiments 4 and 5, we focus on non-Gaussian channel fields with a 2D transmissivity field to explore the 
estimation performance of HT-INV-NN in the presence of non-Gaussian channel patterns. The latent variable 
dimension for these experiments is set to 16, and the generated fields have a resolution of 128 × 128. The domain 
size, boundaries, steady-state HT setup, and predictor training are consistent with those used in Experiment 1. We 
conduct two separate experiments to address continuous and discontinuous fields.

4.2.1. Discontinuous Channel Field

In Experiment 4, the discontinuous channel fields are generated using the trained discontinuous-GAN and strictly 
contain two facies: high transmissivity channels and low transmissivity solid regions. The transmissivity values 
used are 1 m 2/hr for channels and 10 −4 m 2/hr for solid regions. The outputs from the generator G are filtered by 
a median filter to remove impurities and binarized by a split value of 0. Figure 11 shows one inverse modeling 
example of Experiment 4. Overall, the predictive DL model shows very good inverse results: the map accuracy 
between the true and estimated transmissivity field exceeds 90%, and the majority of latent variables are well 
estimated. The predicted hydraulic heads closely match the observation data. These results demonstrate that 
HT-INV-NN can predict latent variables for channel fields and DC-GAN can provide satisfactory generation of 
the original field from the estimated latent variables. We further perform the inverse modeling on multiple valida-
tion data sets and the results are summarized in Table 2. For 500 realizations, the mean accuracy is 84% and the 
standard deviation is 4%; the mean relative residual of hydraulic head prediction is 27% and standard deviation is 
11%. Compared with Gaussian experiments in the previous sections, the accuracy of estimated channel fields is 
slightly lower, and simulated hydraulic heads from estimated channel fields are more biased and uncertain. This 
shows that the experiments in channel fields are sensitive to small-scale heterogeneity or connectivity patterns, 
which are more challenging to be characterized by HT experiments. In fact, only given indirect hydraulic head 
measurements and two-point geostatistics, it is difficult to inversely estimate field connectivity (Han et al., 2022; 
Hao et al., 2008). Using the nonlinear feature extractor, DC-GAN is possible to recognize the complex spatial 
distribution patterns in the TI and provide effective dimensionality reduction.
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4.2.2. Continuous Channel Field

In Experiment 5, the continuous channel fields are generated using the continuous-GAN. These fields exhibit 
fluctuated and blurred facies, but still maintain the expected high and low transmissivity characteristics. Figure 12 
showcases an example of inverse modeling from Experiment 5, indicating that the HT-INV-NN model produced 
excellent inverse results. The map accuracy between the estimated (B) and true (A) transmissivity field exceeds 

Figure 10. Inverse modeling of Experiment 3: steady-state HT in a 3D Gaussian field with a Gaussian spatial covariance model. (A1) A reference lnK realization 
with a Gaussian covariance model; (A2) The estimated field by HT-INV-NN; (B1) Simulated hydraulic heads based on the true lnK field; (B2) Simulated hydraulic 
heads based on the estimated lnK field; (C) True and estimated latent variables; (D) Comparison of measured hydraulic heads and simulated hydraulic heads using the 
estimated lnK field.
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90%, with a majority of the latent variables accurately estimated (C), and the predicted hydraulic heads matching 
the observed data (D). These results clearly demonstrate the ability of HT-INV-NN to predict latent variables, 
while DC-GAN successfully generates satisfactory continuous channel fields from the estimated latent variables. 
We perform inverse modeling on the entire validation data set, and the results are summarized in Table 2. For 500 
realizations, the mean accuracy is 88%, with a standard deviation of 6%. The mean relative residual of hydraulic 
head prediction is 7%, with a standard deviation of 3%. The accuracy of estimated channel fields is slightly higher 
compared to the binary discontinuous channel experiments in the previous sections, and the simulated hydraulic 
heads from the estimated channel fields exhibit higher precision. This improvement can be attributed to the fact 
that continuous channel fields produce smoother and more predictable transitions of hydraulic heads compared 
to the discontinuous binary fields.

4.3. Model Comparison

In this section, we compare HT-INV-NN with other two inverse approaches: UPCIA and MCMC  +  GAN. 
The UPCIA method, proposed by Zhao et al. (2022), is a promising numerical technique for high-dimensional 
inverse modeling of groundwater flow. It utilizes dimensionality reduction and upscaling techniques based on 
principal component analysis (PCA) to construct an effective model that can capture the essential features of 
high-dimensional random fields. The effective model is then used in a Bayesian gradient-based inverse frame-
work to estimate the latent variables of the groundwater flow system. The effectiveness of the UPCIA approach 
has been demonstrated through numerical experiments involving 3D Gaussian random fields, where it achieved 
high accuracy with a relatively low computational cost. However, its effectiveness has not been tested in binary 
fields, which exhibit sensitivity to small-scale heterogeneities. MCMC + GAN proposed by Laloy et al. (2018) 
combines DC-GAN and Markov chain Monte Carlo (MCMC) sampling for inverse modeling of binary chan-
nel fields. The trained DC-GAN model is used as a prior for the inverse problem, and MCMC is employed to 
sample from the posterior distribution of the unknown parameters. The results show that the DC-GAN + MCMC 
approach can accurately estimate the spatial distribution of high and low permeability media in binary channel 
fields. However, it requires a significant computational cost due to the large number of MCMC iterations needed 
for convergence.

Figure 11. Inverse modeling of Experiment 4: steady-state HT in a binary non-Gaussian channel field. (a) Reference channel lnT realization; (b) Estimated field from 
HT-INV-NN; (c) True and estimated latent variables; (d) Input hydraulic heads and simulated hydraulic heads with the estimated lnT field.

Figure 12. Inverse modeling of Experiment 5: steady-state HT in a continuous non-Gaussian channel field. (a) Reference channel lnT realization; (b) Estimated field 
from HT-INV-NN; (c) True and estimated latent variables; (d) Input hydraulic heads and simulated hydraulic heads with the estimated lnT field.
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Table 3 compares the inverse modeling performance of four different models on HT experiments with varying 
field types, resolutions, numbers of wells, and runtimes. The UPCIA model performs inverse modeling on a 3D 
Gaussian field with a resolution of 256 × 256 × 16 and achieves an accuracy of 96% using data from 16 wells 
with a runtime of 307 s per inverse case. The PCA + HT-INV-NN model uses a 3D Gaussian field with a resolu-
tion of 64 × 64 × 16 and achieves higher accuracy of 97% using data from 25 wells. It requires a longer training 
time of 3.67 hr, but only 2 s for 500 inverse cases. The GAN + MCMC model and the GAN + HT-INV-NN 
model both use 2D binary channel fields with a resolution of 128 × 128 and achieve accuracies of 84% and 85%, 
respectively. The GAN + MCMC model required data from 49 wells and approximately 48,400 MCMC itera-
tions per inverse case, which likely takes much longer than 1 hr (a physical runtime was not provided). While the 
GAN + HT-INV-NN model uses data from 25 wells and requires a training time of 0.92 hr and only 2 s for  the 
500 inverse cases. Overall, the HT-INV-NN model demonstrates the highest accuracy with a moderate training 
time and a minimum inverse estimation runtime. The training is one-time cost which can be marginalized to 
a large number of predictions. To further improve performance, it is possible to rearrange the pumping well 
networks to reduce the number of hydraulic heads used as inputs for the HT-INV-NN model, while maintaining 
equivalent estimation accuracy. This adjustment would decrease the number of tunable coefficients in the input 
layer of the predictor, resulting in shorter training times. However, the optimal experimental design falls outside 
the scope of the current study.

5. Conclusion
In this work, we develop HT-INV-NN, a deep learning-based inverse model, for high-dimensional HT inverse 
problems. HT-INV-NN consists of a decoder and a predictor. The decoder utilizes prior geostatistical information 
to convert latent variables into high-dimensional realizations. For Gaussian fields, the decoder uses principal 
components derived from two-point spatial covariance models. For non-Gaussian channel fields, the decoder is 
implemented as a generator of a GAN trained on reference channel realizations using a TI. With the constructed 
decoder, the model can generate or recover Gaussian or channel fields based on latent variables. The predictor 
in HT-INV-NN is a DNN model that directly learns the inverse process from measurements to latent variables, 
rather than a forward model. In our experiments, we implement steady-state and transient HT forward models 
to collect hydraulic heads in a well network, which serve as the inputs for the predictor. The training data can be 
generated independently and in parallel, resulting in an efficient training process. Compared to DNN surrogate 
models for forward models, the predictive model has fewer hyperparameters to tune and exhibits great robustness 
to small perturbations in input data.

The main advantage of HT-INV-NN lies in its ability to directly predict latent variables without the need for 
additional optimization or simulation of forward models during the inverse modeling process. This eliminates 
the computational burden associated with iterative methods or surrogate models. Although the predictor needs 
a large set of training data generated by forward models, the total number of training cases is manageable, espe-
cially considering that the training is one-time cost. After training, the computational time required for inverse 
modeling as well as forward propagation of the predictor is minimal. The effectiveness of the designed GAN 
decoder and DNN predictor in HT-INV-NN has been demonstrated across different types of random fields. 
The model exhibits great versatility and can handle various scenarios, including Gaussian fields with different 

Model Field type Resolution Accuracy Number of wells Runtime

UPCIA [a] 3D Gaussian 256 × 256 × 16 96% 16 307 s per inverse case

PCA + HT-INV-NN 3D Gaussian 64 × 64 × 16 97% 25 3.67 hr training + 2 s for 
500 inverse cases

GAN + MCMC [b] 2D Binary Channel 128 × 128 84% 49 48,400 MCMC iterations 
per inverse case

GAN + HT-INV-NN 2D Binary Channel 128 × 128 85% 25 0.92 hr training + 2 s for 
500 inverse cases

Note. Metrics of UPCIA and GAN + MCMC are extracted or derived from references [a] Zhao et al. (2022) and [b] Laloy et al. (2018).

Table 3 
Inverse Modeling Performance of Different Models on HT Experiment
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smoothness levels and binary non-Gaussian channel fields with discontinuous and continuous patterns. This 
versatility highlights the robustness and adaptability of HT-INV-NN to different geostatistical variations and 
field characteristics.

It is important to note that HT-INV-NN relies on a known stochastic process, such as spatial correlations or a TI, 
to generate reference data. As a result, the model is limited to solving inverse problems within the same stochastic 
process. This limitation is common among most deep learning-based methods, regardless of the generalization 
capabilities of the model architecture. It is challenging to develop a single deep learning model that is capable of 
estimating both Gaussian fields and non-Gaussian fields, or even Gaussian fields with different structural param-
eters (Jardani et al., 2022; Vu & Jardani, 2022a, 2022b). As additional characterization information becomes 
available, it is convenient to update the encoder and decoder components of HT-INV-NN to ensure that the esti-
mates conform to the newly identified distribution patterns. Recent advancements in gradient-based models with 
self-correction mechanisms have shown promise in addressing biased prior geostatistical information, offering 
potential solutions to overcome this limitation (Zhao & Luo, 2021b). In our future work, we plan to enhance 
HT-INV-NN by developing more generalizable decoders that do not rely heavily on accurate geostatistical prior 
information. This will allow the model to handle a broader range of stochastic processes and improve its appli-
cability to various field types. Furthermore, we are actively exploring the extension of HT-INV-NN to other 
groundwater applications, such as tracer testing. This involves training a DNN predictor specifically tailored to 
these applications and integrating it with the GAN decoder. By expanding the capabilities of HT-INV-NN to 
different hydrogeological scenarios, we aim to provide a more comprehensive and versatile tool for groundwater 
characterization and management.

Data Availability Statement
Data sets, computational notebooks, and saved models that support the findings of this study are available in 
Guo, Liu, & Luo (2023). Open source software including snesim program (Strebelle, 2002), Tensorflow (Abadi 
et al., 2015), Matplotlib (Hunter, 2007), and visualkeras (Gavrikov, 2020) are used to generate data sets, models, 
and figures.
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