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Presenter Notes
Presentation Notes
Hello, everyone, my name is Quan, I am a PhD student from Georgia Tech Civil Engineering. My advisor is Prof. Jian Luo and our group focus on groundwater inverse modeling with geostatistical and machine learning approach. Today I am very honored to introduce my work about applying physics-informed neural network to inverse modeling of hydraulic tomography.



Groundwater Pumping Test
Pumping test is widely used to investigate porous media property and 
simulate groundwater (GW) flow.

Porous media Hydraulic heads

Presenter Notes
Presentation Notes
Hydraulic tomography is conducting sequential pumping tests in porous media and observe the responses of hydraulic heads. It is widely used for characterizing conductivity or transmissivity of the porous media.




GW Forward and Inverse Problem

forward problem

𝑆𝑆𝑠𝑠 − specific storage; 𝑇𝑇 − hydraulic transmissivity
ℎ − hydraulic head; 𝐪𝐪 − flux; 𝑄𝑄 − source/sink

Forward model is numerical 
method, e.g., finite element 
method (FEM)

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −𝛻𝛻 � 𝐪𝐪 + 𝑄𝑄 Mass conservation 
𝐪𝐪 = 𝑇𝑇𝛻𝛻ℎ Darcy’s Law𝑇𝑇 ∈ ℝn×1 ≫ ℝm×1 ∋ ℎ

parameterized PDEs

inverse problem
non-linear and ill-posed Gradient-based inverse methods 

iteratively run forward model to 
determine Jacobian matrix, etc.

Computationally expensive & 
non-scalable

Field dimension:    𝑛𝑛
Complexity:           𝑂𝑂(𝑛𝑛2)

(Zhao & Luo, 2020; Zhao & Luo, 2021a; Zhao & Luo, 2021b; Zhao et al., 2022)

Forward

Inverse

Presenter Notes
Presentation Notes
Correspondingly, the forward problem solves hydraulic heads with known transmissivity, and numerical method like FEM can be used as forward model. However, The inverse problem is characterizing transmissivity, it is ill-posed and nonlinear, many gradient-based methods need to run the forward model iteratively. Such methods are computationally expensive when the dimension of the transmissivity field is large.



GW PINN Model

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −𝛻𝛻 � 𝐪𝐪 + 𝑄𝑄
𝐪𝐪 = 𝑇𝑇𝛻𝛻ℎ

governs

Mass conservation
Darcy’s Law

Groundwater PINNs 𝑁𝑁𝑁𝑁 𝑥𝑥∗,𝑦𝑦∗ = ℎ(𝑥𝑥∗,𝑦𝑦∗)
𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥∗,𝑦𝑦∗ = 𝑇𝑇 𝑥𝑥∗,𝑦𝑦∗

PDE residuals

ℒ 𝑇𝑇∗, ℎ∗; 𝑥𝑥∗,𝑦𝑦∗

ℒ 𝑇𝑇∗,ℎ∗; 𝑥𝑥∗,𝑦𝑦∗ = 𝜙𝜙𝑛𝑛 𝑇𝑇∗,ℎ∗, 𝜕𝜕𝑇𝑇
∗

𝜕𝜕𝑥𝑥∗
, 𝜕𝜕𝑇𝑇

∗

𝜕𝜕𝑦𝑦∗
, 𝜕𝜕ℎ

∗

𝜕𝜕𝑥𝑥∗
, 𝜕𝜕ℎ

∗

𝜕𝜕𝑦𝑦∗
, 𝜕𝜕

2𝑇𝑇∗

𝜕𝜕𝑥𝑥∗2
, … , 𝜕𝜕

𝑛𝑛ℎ∗

𝜕𝜕𝑦𝑦∗𝑛𝑛

Partial derivatives are evaluated with automatic differentiation

minimize

ℒ 𝑇𝑇∗, ℎ∗; 𝑥𝑥∗,𝑦𝑦∗ = 0

Loss of PDE 
regularization

formulate

soft constraint

(He & Tartakovsky, 2021; Raissi et al., 2019; Tartakovsky et al., 2020; Wang et al., 2021; Xu et al., 2021) 

(Tartakovsky et al., 2020)
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Presentation Notes
Recently, Dr. Tartakovsky proposed to use physics informed neural networks in sub-flow modeling. In the work, there are two nets, one for hydraulic heads and the other for conductivity, they are combined to minimize the loss term of PDE regularization. This term is derived from sub-flow governing equations. The related partial derivatives are evaluated with automatic differentiation. Within the same framework, we use PINN to simulate the hydraulic tomography.
In 2017, Dr. Raissi proposed PINNs to solve PDE with neural networks.



Physical Constraints of Pumping Test 

PLAN View

Aquifer (𝑇𝑇): 2D, 1024×1024, confined & saturated, isotropic 

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ 𝑥𝑥𝑒𝑒,𝑦𝑦𝑒𝑒,𝑡𝑡𝑒𝑒

𝜕𝜕𝜕𝜕
− 𝛻𝛻 � 𝑇𝑇 𝑥𝑥𝑒𝑒 , 𝑦𝑦𝑒𝑒 𝛻𝛻ℎ 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑡𝑡𝑒𝑒 = 0,

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝,𝑡𝑡𝑝𝑝

𝜕𝜕𝜕𝜕
− 𝛻𝛻 � 𝑇𝑇 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝 𝛻𝛻ℎ 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑡𝑡𝑝𝑝 = 𝑄𝑄𝑝𝑝,

𝐧𝐧 � 𝛻𝛻ℎ 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁, 𝑡𝑡𝑁𝑁 = 𝑞𝑞𝑁𝑁,

ℎ 𝑥𝑥𝐷𝐷,𝑦𝑦𝐷𝐷 , 𝑡𝑡𝐷𝐷 = ℎ𝐷𝐷 ,

ℎ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 0 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,

PDE for non-pumping grid

PDE for pumping grid

Neumann Boundary Condition
Dirichlet Boundary Condition
Initial Condition

𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 ∈ 𝛺𝛺, 𝑡𝑡𝑒𝑒 ∈ 0, T

(𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝) ∈ 𝛺𝛺, 𝑡𝑡𝑝𝑝 ∈ 0, T

𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁 ∈ 𝛤𝛤𝑁𝑁, 𝑡𝑡𝑁𝑁 ∈ (0, T]

𝑥𝑥𝐷𝐷,𝑦𝑦𝐷𝐷 ∈ 𝛤𝛤𝐷𝐷, 𝑡𝑡𝐷𝐷 ∈ 0, T

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝛺𝛺

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ
𝜕𝜕𝑡𝑡

= −𝛻𝛻 � 𝐪𝐪 + 𝑄𝑄 Mass conservation 
𝐪𝐪 = 𝑇𝑇𝛻𝛻ℎ Darcy’s Law
𝑆𝑆𝑠𝑠 − specific storage; 𝑇𝑇 − hydraulic transmissivity
ℎ − hydraulic head; 𝐪𝐪 − flux; 𝑄𝑄 − source/sink

(Guo et al., 2022)

Presenter Notes
Presentation Notes
In the simulation, the aquifer is 2D, the resolution is1024x1024, containing over 1 million unknowns. The system of pumping test has 5 PDEs, including initial and boundary conditions and governing equations for non-pumping grid and pumping well. The two governing equations have the same form but are different the right-hand side by the pumping rate.
Pumping grid is a sink to the system.



Network Architecture

Transient Forward Inverse

Input variables Spatial & temporal 
(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

Spatial (𝑥𝑥, 𝑦𝑦)

Output variables Hydraulic heads (ℎ) Transmissivity (𝑇𝑇)

Number of layers 7

Hidden dimensions 50

Activation function Hyperbolic (tanh)

Output layer type Linear

ℎ 𝑥𝑥,𝑦𝑦, 𝑡𝑡 ≈ 𝑁𝑁𝑁𝑁 𝑥𝑥,𝑦𝑦, 𝑡𝑡
𝑇𝑇 𝑥𝑥,𝑦𝑦 ≈ 𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥, 𝑦𝑦

Data (reference): 
Monitored hydraulic heads: 𝑁𝑁𝑁𝑁 𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚 = ℎ𝑚𝑚
Measurements of transmissivity:  𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑇𝑇 ,𝑦𝑦𝑇𝑇 = 𝑇𝑇 𝑥𝑥𝑇𝑇 ,𝑦𝑦𝑇𝑇

𝑆𝑆𝑠𝑠
𝜕𝜕𝑁𝑁𝑁𝑁 𝑥𝑥𝑒𝑒,𝑦𝑦𝑒𝑒,𝑡𝑡𝑒𝑒

𝜕𝜕𝜕𝜕
− 𝛻𝛻 � [𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 𝛻𝛻𝑁𝑁𝑁𝑁 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑡𝑡𝑒𝑒 ] = 0

𝑆𝑆𝑠𝑠
𝜕𝜕𝑁𝑁𝑁𝑁 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝,𝑡𝑡𝑝𝑝

𝜕𝜕𝜕𝜕
− 𝛻𝛻 � 𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝 𝛻𝛻𝑁𝑁𝑁𝑁 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑡𝑡𝑝𝑝 = 𝑄𝑄𝑝𝑝

𝐧𝐧 � 𝛻𝛻𝑁𝑁𝑁𝑁 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁 , 𝑡𝑡𝑁𝑁 = 𝑞𝑞𝑁𝑁
𝑁𝑁𝑁𝑁 𝑥𝑥𝐷𝐷,𝑦𝑦𝐷𝐷 , 𝑡𝑡𝐷𝐷 = ℎ𝐷𝐷
𝑁𝑁𝑁𝑁 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 0 = ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

DNN model:

Regularization (collocation):

Network Structure

(Guo et al., 2022)

Forward Net Inverse Net
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We use two neural networks for simulating a pumping test. Forward net takes spatial and temporal coordinates as input and predict hydraulic head as output. Inverse net takes spatial coordinate as input and estimate transmissivity as output. We collect labeled reference data for both of networks at measuring locations. Besides, two nets are forced to satisfy the PDE constraints at collocation points.



Data Batch Sampling 

+

Reference
Data

Collocation Data

Random

Data Batch

Composition of training data in each batch for HT-PINN

Type of points Pumping Time Batch Number

Pumping 𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝 Invariant Invariant Invariant 1

Neumann 𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁 Invariant Invariant Invariant 64 × 2

Dirichlet 𝑥𝑥𝐷𝐷,𝑦𝑦𝐷𝐷 Invariant Invariant Invariant 64 × 2

Direct 𝑥𝑥𝑇𝑇 ,𝑦𝑦𝑇𝑇 Invariant Invariant Invariant 61

Initial 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Variant Invariant Invariant 25

Monitored 𝑥𝑥𝑚𝑚, 𝑦𝑦𝑚𝑚, 𝑡𝑡𝑚𝑚 Variant Variant Invariant 24

Non-pumping 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑡𝑡𝑒𝑒 Variant Variant Variant 300

(Guo et al., 2022)

Deterministic 

BC, IC, 
pumping,
reference

Non-
pumping =

Presenter Notes
Presentation Notes
The measurements and collocation data for training are sampled in batch, at each time step in a pumping test, we sample 10 batch of data. Within these batch, most data are deterministic except for the non-pumping grids. Non-pumping grids are randomly selected from the domain, the number of them is a hyperparameter like batch size in deep learning.
Deterministic data include reference data and boundary and initial conditions and pumping grid.



PINN for Transient Pumping Test 

(Guo et al., 2022)
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Presentation Notes
This is the graph of PINN for pumping test. In each training iteration, a batch of data is used to train the PINN. The predictions from two nets are used for evaluating loss of data match and zero-order constraints like constant-head initial condition and Dirichlet BC. Then, automatic differentiation is applied to compose the higher-order PDE loss terms. Total loss is weighted sum of all these loss terms. It is optimized through backpropagation.



Each pumping test has a 

forward network 𝑁𝑁𝑁𝑁𝑖𝑖

Hydraulic Tomography - PINN

(Guo et al., 2022)

Total loss of HT-PINN: 

ℓHT−PINN = ∑ℓ𝑁𝑁𝑁𝑁𝑖𝑖 + ℓ𝑇𝑇𝑇𝑇𝑇𝑇

One inverse network 𝑇𝑇𝑁𝑁𝑁𝑁

Presenter Notes
Presentation Notes
In hydraulic tomography, sequential pumping tests are conducted at different locations. Each of them is a specific forward problem and is simulated by an individual forward net. The inverse net is unchanged. Multiple nets can be trained together to provide stronger PDE constraints. And this is full hydraulic tomography PINN or HT-PINN.



Average relative residual 𝜖𝜖𝑁𝑁𝑁𝑁𝑡𝑡𝑖𝑖 average 
on all time steps 𝑡𝑡 = 0.1 − 1.0:

• P1:   6.14%
• P5:   6.26%
• P13: 6.23%
• P21: 6.58%
• P25: 6.53%

Transient Forward Prediction

(Guo et al., 2022)
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Let’s see the simulation results. Here is the performance of forward net. The bottom two figures are comparison between model prediction and reference data at specific location. The top figure shows the reference solution from FEM and prediction from forward net of the entire domain at different time steps. The evaluation metrics is relative residual, the result of each pumping test is around 6%.
They match very well including defined boundary condition. 



The relative residual 𝜖𝜖𝑇𝑇𝑇𝑇𝑇𝑇 is 10.32%, and the accuracy is 94.93%. 

Training time is about 9.5 hours.

Inverse Estimation

(Guo et al., 2022)
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Here is the result of inverse net, (A) is the reference field and (B) is the estimation from the inverse net. (C) is the comparison between them. The accuracy of the estimation is around 95%.



Model RGA HT-PINN
Accuracy > 90% > 90%
𝑵𝑵𝒉𝒉 24×5 24×5
𝑵𝑵𝒍𝒍𝒍𝒍𝒍𝒍 0 61
Covariance Yes No
Scalability Linear Constant

Model Scalability

(Guo et al., 2022)

Future improvements:
• Data efficiency: reduce amount of reference data
• Generalizability: applicable to non-Gaussian field

Presenter Notes
Presentation Notes
We investigate scalability of HT-PINN through inversing field of different resolutions. The runtime is compared with a gradient-based model called RGA. Training time of HT-PINN is constant of all tests since it is a pointwise deep learning model and training time only depends on the batch size and number of training iterations. On the other hand, runtime of RGA is about linearly increasing because it needs to run the forward model iteratively to approximate the gradient. This results shows that PINN can be used for high-dimensional inverse problem. In future, we want to improve HT-PINN to be more data efficient and generalizable which requires smaller amount of reference data and can be applicable to non-Gaussian field.
With inspirations from other excellent models like TgNN-Geo, PI-CKLE or Geo-GAN.



Many thanks for your time!

Appreciate any questions

Acknowledgements: thanks many peers for sharing their work of applying machine learning to subsurface modeling where we get 
inspirations and guidance from, especially Dr. A.M, Tartakovsky, Dr. D, Zhang, Dr. N, Wang, Dr. Q, He, Dr. E, Laloy, Dr. R, Xu, 
etc.
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Thanks very much for your time! Very glad to answer your questions.
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Appendix – Experimental Domain
Hydrogeological and geostatistical parameters for the
hydraulic tomography experiment
Parameter Values
Domain size, 𝐿𝐿𝑥𝑥 × 𝐿𝐿𝑦𝑦 320m × 320m
Grid spacing, 𝛥𝛥𝛥𝛥 × 𝛥𝛥𝛥𝛥 0.3125m × 0.3125m
Spatial resolution, 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑦𝑦 1024 × 1024
Transmissivity, 𝑇𝑇 [m2/hr]

Geometric mean 0
Variance of ln𝑇𝑇, 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 1
Correlation length, 𝜆𝜆𝑥𝑥 × 𝜆𝜆𝑦𝑦 64m × 48m

Left Boundary h=0m
Right Boundary h=0m
Initial Condition h=0m
Pumping Time [hr] 1
Monitor Time Step [hr] 0.1
Pumping Rate [m3/hr] 3.6



Appendix – PDE Loss 
Physical Constraints:

𝑆𝑆𝑠𝑠
𝜕𝜕ℎ 𝑥𝑥𝑒𝑒,𝑦𝑦𝑒𝑒,𝑡𝑡𝑒𝑒

𝜕𝜕𝜕𝜕
− 𝛻𝛻 � 𝑇𝑇 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 𝛻𝛻ℎ 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑡𝑡𝑒𝑒 = 0,

PDE residual:

𝑓𝑓𝑁𝑁𝑁𝑁𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥,𝑦𝑦, 𝑡𝑡 = 𝑆𝑆𝑠𝑠
𝜕𝜕𝑁𝑁𝑁𝑁𝑖𝑖 𝑥𝑥, 𝑦𝑦, 𝑡𝑡

𝜕𝜕𝜕𝜕
− ∇ � 𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥,𝑦𝑦 ∇𝑁𝑁𝑁𝑁𝑖𝑖 𝑥𝑥,𝑦𝑦, 𝑡𝑡 ,

PDE for non-pumping grid:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑒𝑒 =
1
𝑁𝑁𝑒𝑒

�
𝑗𝑗=1

𝑁𝑁𝑒𝑒
𝑓𝑓𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑒𝑒

𝑗𝑗 ,𝑦𝑦𝑒𝑒
𝑗𝑗 , 𝑡𝑡𝑒𝑒

𝑗𝑗 2

PDE for pumping grid:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝 =
1
𝑁𝑁𝑝𝑝

�
𝑗𝑗=1

𝑁𝑁𝑝𝑝
𝑓𝑓𝑁𝑁𝑁𝑁,𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑝𝑝

𝑗𝑗 ,𝑦𝑦𝑝𝑝
𝑗𝑗 , 𝑡𝑡𝑝𝑝

𝑗𝑗 − 𝑄𝑄𝑝𝑝
2



Appendix – B.C and I.C Loss

Initial Condition:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
�
𝑗𝑗=1

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁𝑁𝑁 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 0 − ℎ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 0 2

Neumann B.C.:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁 =
1
𝑁𝑁𝑁𝑁

�
𝑗𝑗=1

𝑁𝑁𝑁𝑁
𝒏𝒏 � ∇𝑁𝑁𝑁𝑁 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁, 𝑡𝑡𝑁𝑁 − 𝑞𝑞𝑁𝑁 2

Dirichlet B.C.:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐷𝐷 =
1
𝑁𝑁𝐷𝐷

�
𝑗𝑗=1

𝑁𝑁𝐷𝐷
𝑁𝑁𝑁𝑁 𝑥𝑥𝐷𝐷

𝑗𝑗 ,𝑦𝑦𝐷𝐷
𝑗𝑗 , 𝑡𝑡𝐷𝐷

𝑗𝑗 − ℎ 𝑥𝑥𝐷𝐷
𝑗𝑗 ,𝑦𝑦𝐷𝐷

𝑗𝑗 , 𝑡𝑡𝐷𝐷
𝑗𝑗 2



Appendix – Data Match Loss

Monitored Hydraulic Heads:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑚𝑚 =
1
𝑁𝑁𝑚𝑚

�
𝑗𝑗=1

𝑁𝑁𝑚𝑚
𝑁𝑁𝑁𝑁 𝑥𝑥𝑚𝑚

𝑗𝑗 ,𝑦𝑦𝑚𝑚
𝑗𝑗 , 𝑡𝑡𝑚𝑚

𝑗𝑗 − ℎ 𝑥𝑥𝑚𝑚
𝑗𝑗 ,𝑦𝑦𝑚𝑚

𝑗𝑗 , 𝑡𝑡𝑚𝑚
𝑗𝑗 2

Measured Transmissivity:

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑇𝑇 =
1
𝑁𝑁𝑇𝑇

�
𝑗𝑗=1

𝑁𝑁𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥𝑇𝑇

𝑗𝑗 , 𝑦𝑦𝑇𝑇
𝑗𝑗 − 𝑇𝑇 𝑥𝑥𝑇𝑇

𝑗𝑗 ,𝑦𝑦𝑇𝑇
𝑗𝑗 2



Appendix – Loss Function

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁𝑁𝑁 = 𝜆𝜆𝑚𝑚𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑚𝑚 + 𝜆𝜆𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑒𝑒 + 𝜆𝜆𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁 + 𝜆𝜆𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐷𝐷 + 𝜆𝜆𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑝𝑝 + 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐻𝐻𝐻𝐻−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �
𝑖𝑖=1,2,…𝑛𝑛

𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖 + 𝜆𝜆𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑇𝑇

𝜆𝜆𝑚𝑚 = 104, 𝜆𝜆𝑓𝑓 = 50, 𝜆𝜆𝑝𝑝 = 1, 𝜆𝜆𝑁𝑁 = 104, 𝜆𝜆𝐷𝐷 = 2 × 104, 𝜆𝜆𝑇𝑇 = 103, 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 104



Appendix – Evaluation Met

𝜖𝜖𝑁𝑁𝑁𝑁𝑖𝑖 =
𝑵𝑵𝑵𝑵𝒊𝒊 𝑥𝑥,𝑦𝑦, 𝑡𝑡 − 𝒉𝒉𝒊𝒊 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 2

2

𝒉𝒉𝒊𝒊 𝑥𝑥,𝑦𝑦, 𝑡𝑡 2
2 , 𝑥𝑥, 𝑦𝑦 ∈ 𝛺𝛺, 𝑡𝑡 ∈ (0, T]

𝜖𝜖𝑇𝑇 =
𝑻𝑻𝑻𝑻𝑻𝑻 𝑥𝑥, 𝑦𝑦 − 𝑻𝑻 𝑥𝑥,𝑦𝑦 2

2

𝑻𝑻 𝑥𝑥,𝑦𝑦 2
2 , 𝑥𝑥,𝑦𝑦 ∈ 𝛺𝛺

𝜀𝜀 𝑥𝑥,𝑦𝑦 =
𝑇𝑇𝑇𝑇𝑇𝑇 𝑥𝑥,𝑦𝑦 − 𝑇𝑇 𝑥𝑥,𝑦𝑦

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥, 𝑦𝑦 ∈ 𝛺𝛺

Accuracy = percent of grids with 𝜀𝜀 𝑥𝑥,𝑦𝑦 < 10%

Relative residuals:

Inverse accuracy:



Appendix – Training Implementation
• 5 forward networks + 1 inverse network are trained together.
• Reference data are corrupted with 5% white noises.
• Input and output variables are normalized.
• Different loss terms are weighted to similar magnitude.
• Each training iteration takes a batch of data to feed HT-PINN.
• Each epoch has 50 iterations for steady-state and 500 iterations for transient HT.
• HT-PINN is trained for 3000 epochs with Adam optimizer.
• Learning rate = 10-3 for 1-1000, 10-4 for 1000-2000, 10-5 for 2000-3000.
• Training hardwares are Google Colab GPU
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